Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Nov;174(21):6857–6861. doi: 10.1128/jb.174.21.6857-6861.1992

Purification and characterization of phosphoenolpyruvate phosphomutase from Pseudomonas gladioli B-1.

H Nakashita 1, A Shimazu 1, T Hidaka 1, H Seto 1
PMCID: PMC207363  PMID: 1400236

Abstract

Phosphoenolpyruvate phosphomutase (PEPPM) catalyzes C-P bond formation by intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate (PnPy). We purified PEPPM from a gram-negative bacterium, Pseudomonas gladioli B-1 isolated as a C-P compound producer. The equilibrium of this reaction favors the formation of the phosphate ester by cleaving the C-P bond of PnPy, but the C-P bond-forming reaction is physiologically significant. The C-P bond-forming activity of PEPPM was confirmed with a purified protein. The molecular mass of the native enzyme was estimated to be 263 and 220 kDa by gel filtration and polyacrylamide gel electrophoresis, respectively. A subunit molecular mass of 61 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the native protein was a tetramer. The optimum pH and temperature were 7.5 to 8.0 and 40 degrees C, respectively. The Km value for PnPy was 19 +/- 3.5 microM, and the maximum initial velocity of the conversion of PnPy to phosphoenolpyruvate was 200 microM/s/mg. PEPPM was activated by the presence of the divalent metal ion, and the Km values were 3.5 +/- 1.4 microM for Mg2+, 16 +/- 5 nM for Mn2+, 3.0 +/- 1.5 microM for Zn2+, and 1.2 +/- 0.2 microM for Co2+.

Full text

PDF
6857

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman E. D., McQueney M. S., Scholten J. D., Dunaway-Mariano D. Purification and characterization of the Tetrahymena pyriformis P-C bond forming enzyme phosphoenolpyruvate phosphomutase. Biochemistry. 1990 Jul 31;29(30):7059–7063. doi: 10.1021/bi00482a016. [DOI] [PubMed] [Google Scholar]
  2. Cassaigne A., Lacoste A. M., Neuzil E. Transamination non enzymatique des acides aminés phosphoniques. Biochim Biophys Acta. 1971 Dec 21;252(3):506–515. [PubMed] [Google Scholar]
  3. HORIGUCHI M., KANDATSU M. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature. 1959 Sep 19;184(Suppl 12):901–902. doi: 10.1038/184901b0. [DOI] [PubMed] [Google Scholar]
  4. Hendlin D., Stapley E. O., Jackson M., Wallick H., Miller A. K., Wolf F. J., Miller T. W., Chaiet L., Kahan F. M., Foltz E. L. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969 Oct 3;166(3901):122–123. doi: 10.1126/science.166.3901.122. [DOI] [PubMed] [Google Scholar]
  5. Hidaka T., Imai S., Hara O., Anzai H., Murakami T., Nagaoka K., Seto H. Carboxyphosphonoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation. J Bacteriol. 1990 Jun;172(6):3066–3072. doi: 10.1128/jb.172.6.3066-3072.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hidaka T., Mori M., Imai S., Hara O., Nagaoka K., Seto H. Studies on the biosynthesis of bialaphos (SF-1293). 9. Biochemical mechanism of C-P bond formation in bialaphos: discovery of phosphoenolpyruvate phosphomutase which catalyzes the formation of phosphonopyruvate from phosphoenolpyruvate. J Antibiot (Tokyo) 1989 Mar;42(3):491–494. doi: 10.7164/antibiotics.42.491. [DOI] [PubMed] [Google Scholar]
  7. Imai S., Seto H., Sasaki T., Tsuruoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. Studies on the biosynthesis of bialaphos (SF-1293). 6. Production of N-acetyl-demethylphosphinothricin and N-acetylbialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J Antibiot (Tokyo) 1985 May;38(5):687–690. doi: 10.7164/antibiotics.38.687. [DOI] [PubMed] [Google Scholar]
  8. Itasaka O., Hori T., Sugita M. Biochemistry of shellfish lipids. XI. Incorporation of [32P]orthophosphate into ceramide ciliatine (2-aminoethylphosphonic acid) of the fresh-water mussel, Hyriopsis schlegelii. Biochim Biophys Acta. 1969 Jun 10;176(4):783–788. doi: 10.1016/0005-2760(69)90259-8. [DOI] [PubMed] [Google Scholar]
  9. Katayama N., Tsubotani S., Nozaki Y., Harada S., Ono H. Fosfadecin and fosfocytocin, new nucleotide antibiotics produced by bacteria. J Antibiot (Tokyo) 1990 Mar;43(3):238–246. doi: 10.7164/antibiotics.43.238. [DOI] [PubMed] [Google Scholar]
  10. Rogers T. O., Birnbaum J. Biosynthesis of fosfomycin by Streptomyces fradiae. Antimicrob Agents Chemother. 1974 Feb;5(2):121–132. doi: 10.1128/aac.5.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Seidel H. M., Freeman S., Seto H., Knowles J. R. Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon-phosphorus bond. Nature. 1988 Sep 29;335(6189):457–458. doi: 10.1038/335457a0. [DOI] [PubMed] [Google Scholar]
  12. Seidel H. M., Pompliano D. L., Knowles J. R. Phosphonate biosynthesis: molecular cloning of the gene for phosphoenolpyruvate mutase from Tetrahymena pyriformis and overexpression of the gene product in Escherichia coli. Biochemistry. 1992 Mar 10;31(9):2598–2608. doi: 10.1021/bi00124a021. [DOI] [PubMed] [Google Scholar]
  13. Shoji J., Kato T., Hinoo H., Hattori T., Hirooka K., Matsumoto K., Tanimoto T., Kondo E. Production of fosfomycin (phosphonomycin) by Pseudomonas syringae. J Antibiot (Tokyo) 1986 Jul;39(7):1011–1012. doi: 10.7164/antibiotics.39.1011. [DOI] [PubMed] [Google Scholar]
  14. Warren W. A. Biosynthesis of phosphonic acids in Tetrahymena. Biochim Biophys Acta. 1968 Mar 11;156(2):340–346. doi: 10.1016/0304-4165(68)90263-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES