Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Mar;73(5):589–595. doi: 10.1038/bjc.1996.102

Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR).

Y Iwamoto 1, M Nomizu 1, Y Yamada 1, Y Ito 1, K Tanaka 1, Y Sugioka 1
PMCID: PMC2074333  PMID: 8605091

Abstract

A multimeric peptide, Ac-Y16, consisting of 16 YIGSR sequences from laminin was evaluated for its effect on experimental metastasis, angiogenesis and tumour growth of HT1080 human fibrosarcoma cells. Co-injection of 0.5 mg per mouse of Ac-Y16 i.v. with HT 1080 cells inhibited lung colonisation by 100%, whereas 0.5 mg per mouse of monomeric Ac-YIGSR-NH2(AcY1) inhibited by 94%. Ac-Y16 did not show any direct cytotoxicity in tumour cells in vivo. The effect of the peptides on angiogenesis and tumour growth respectively were evaluated by counting areas of neovessels and weighing tumours after the s.c. implantation of HT1080 cells with basement membrane extracts and the peptide into nude mice. Co-injection of 0.5 mg per mouse of AC-Y16 s.c. with HT1080 cells inhibited angiogenesis and tumour growth by 92% (P<0.05) and 76% (P<0.05) respectively, whereas 0.5 mg per mouse of monomeric Ac-YIGSR-NH2(Ac-Y1) inhibited angiogenesis and tumour growth by 40% (P<0.05) and 9% (P>0.05) respectively. It can be inferred from these data that anti-tumour effects of Ac-Y16 are likely to result from anti-angiogenesis. Intraperitoneal administration of Ac-Y16 was also effective in inhibiting angiogenesis, tumour growth and lung colonisation of HT1080 cells. It was concluded that the multimeric YIGSR-containing peptide, Ac-Y16, inhibits angiogenesis, tumour growth and experimental metastasis more than the monomeric form and that it is active when administered i.p., iv. and s.c.

Full text

PDF
589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  2. Charonis A. S., Skubitz A. P., Koliakos G. G., Reger L. A., Dege J., Vogel A. M., Wohlhueter R., Furcht L. T. A novel synthetic peptide from the B1 chain of laminin with heparin-binding and cell adhesion-promoting activities. J Cell Biol. 1988 Sep;107(3):1253–1260. doi: 10.1083/jcb.107.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fidler I. J., Ellis L. M. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994 Oct 21;79(2):185–188. doi: 10.1016/0092-8674(94)90187-2. [DOI] [PubMed] [Google Scholar]
  4. Fridman R., Giaccone G., Kanemoto T., Martin G. R., Gazdar A. F., Mulshine J. L. Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6698–6702. doi: 10.1073/pnas.87.17.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Graf J., Iwamoto Y., Sasaki M., Martin G. R., Kleinman H. K., Robey F. A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell. 1987 Mar 27;48(6):989–996. doi: 10.1016/0092-8674(87)90707-0. [DOI] [PubMed] [Google Scholar]
  6. Grant D. S., Tashiro K., Segui-Real B., Yamada Y., Martin G. R., Kleinman H. K. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell. 1989 Sep 8;58(5):933–943. doi: 10.1016/0092-8674(89)90945-8. [DOI] [PubMed] [Google Scholar]
  7. Grant D. S., Tashiro K., Segui-Real B., Yamada Y., Martin G. R., Kleinman H. K. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell. 1989 Sep 8;58(5):933–943. doi: 10.1016/0092-8674(89)90945-8. [DOI] [PubMed] [Google Scholar]
  8. Iwamoto Y., Fujita Y., Sugioka Y. YIGSR, a synthetic laminin peptide, inhibits the enhancement by cyclophosphamide of experimental lung metastasis of human fibrosarcoma cells. Clin Exp Metastasis. 1992 May;10(3):183–189. doi: 10.1007/BF00132750. [DOI] [PubMed] [Google Scholar]
  9. Iwamoto Y., Graf J., Sasaki M., Kleinman H. K., Greatorex D. R., Martin G. R., Robey F. A., Yamada Y. Synthetic pentapeptide from the B1 chain of laminin promotes B16F10 melanoma cell migration. J Cell Physiol. 1988 Feb;134(2):287–291. doi: 10.1002/jcp.1041340216. [DOI] [PubMed] [Google Scholar]
  10. Iwamoto Y., Robey F. A., Graf J., Sasaki M., Kleinman H. K., Yamada Y., Martin G. R. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science. 1987 Nov 20;238(4830):1132–1134. doi: 10.1126/science.2961059. [DOI] [PubMed] [Google Scholar]
  11. Kawasaki K., Namikawa M., Murakami T., Mizuta T., Iwai Y., Hama T., Mayumi T. Amino acids and peptides. XIV. Laminin related peptides and their inhibitory effect on experimental metastasis formation. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1159–1162. doi: 10.1016/0006-291x(91)91542-k. [DOI] [PubMed] [Google Scholar]
  12. Kim W. H., Schnaper H. W., Nomizu M., Yamada Y., Kleinman H. K. Apoptosis in human fibrosarcoma cells is induced by a multimeric synthetic Tyr-Ile-Gly-Ser-Arg (YIGSR)-containing polypeptide from laminin. Cancer Res. 1994 Sep 15;54(18):5005–5010. [PubMed] [Google Scholar]
  13. Kimura N. T., Taniguchi S., Aoki K., Baba T. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res. 1980 Jun;40(6):2061–2068. [PubMed] [Google Scholar]
  14. Kleinman H. K., Graf J., Iwamoto Y., Sasaki M., Schasteen C. S., Yamada Y., Martin G. R., Robey F. A. Identification of a second active site in laminin for promotion of cell adhesion and migration and inhibition of in vivo melanoma lung colonization. Arch Biochem Biophys. 1989 Jul;272(1):39–45. doi: 10.1016/0003-9861(89)90192-6. [DOI] [PubMed] [Google Scholar]
  15. Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. Basement membrane complexes with biological activity. Biochemistry. 1986 Jan 28;25(2):312–318. doi: 10.1021/bi00350a005. [DOI] [PubMed] [Google Scholar]
  16. Liotta L. A. Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am J Pathol. 1984 Dec;117(3):339–348. [PMC free article] [PubMed] [Google Scholar]
  17. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  18. Murata J., Saiki I., Azuma I., Nishi N. Inhibitory effect of a synthetic polypeptide, poly(Tyr-Ile-Gly-Ser-Arg), on the metastatic formation of malignant tumour cells. Int J Biol Macromol. 1989 Apr;11(2):97–99. doi: 10.1016/0141-8130(89)90049-4. [DOI] [PubMed] [Google Scholar]
  19. Nakai M., Mundy G. R., Williams P. J., Boyce B., Yoneda T. A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res. 1992 Oct 1;52(19):5395–5399. [PubMed] [Google Scholar]
  20. Nomizu M., Utani A., Shiraishi N., Kibbey M. C., Yamada Y., Roller P. P. The all-D-configuration segment containing the IKVAV sequence of laminin A chain has similar activities to the all-L-peptide in vitro and in vivo. J Biol Chem. 1992 Jul 15;267(20):14118–14121. [PubMed] [Google Scholar]
  21. Nomizu M., Yamamura K., Kleinman H. K., Yamada Y. Multimeric forms of Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide enhance the inhibition of tumor growth and metastasis. Cancer Res. 1993 Aug 1;53(15):3459–3461. [PubMed] [Google Scholar]
  22. Ostheimer G. J., Starkey J. R., Lambert C. G., Helgerson S. L., Dratz E. A. NMR constrained solution structures for laminin peptide 11. Analogs define structural requirements for inhibition of tumor cell invasion of basement membrane matrix. J Biol Chem. 1992 Dec 15;267(35):25120–25128. [PubMed] [Google Scholar]
  23. Passaniti A., Taylor R. M., Pili R., Guo Y., Long P. V., Haney J. A., Pauly R. R., Grant D. S., Martin G. R. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992 Oct;67(4):519–528. [PubMed] [Google Scholar]
  24. Rasheed S., Nelson-Rees W. A., Toth E. M., Arnstein P., Gardner M. B. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974 Apr;33(4):1027–1033. doi: 10.1002/1097-0142(197404)33:4<1027::aid-cncr2820330419>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  25. Roos E., Dingemans K. P. Mechanisms of metastasis. Biochim Biophys Acta. 1979 Feb 4;560(1):135–166. doi: 10.1016/0304-419x(79)90005-2. [DOI] [PubMed] [Google Scholar]
  26. Sakamoto N., Iwahana M., Tanaka N. G., Osada Y. Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res. 1991 Feb 1;51(3):903–906. [PubMed] [Google Scholar]
  27. Sasaki M., Kato S., Kohno K., Martin G. R., Yamada Y. Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats. Proc Natl Acad Sci U S A. 1987 Feb;84(4):935–939. doi: 10.1073/pnas.84.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sasaki M., Kleinman H. K., Huber H., Deutzmann R., Yamada Y. Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J Biol Chem. 1988 Nov 15;263(32):16536–16544. [PubMed] [Google Scholar]
  29. Sasaki M., Yamada Y. The laminin B2 chain has a multidomain structure homologous to the B1 chain. J Biol Chem. 1987 Dec 15;262(35):17111–17117. [PubMed] [Google Scholar]
  30. Tam J. P., Lu Y. A. Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9084–9088. doi: 10.1073/pnas.86.23.9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tashiro K., Sephel G. C., Greatorex D., Sasaki M., Shirashi N., Martin G. R., Kleinman H. K., Yamada Y. The RGD containing site of the mouse laminin A chain is active for cell attachment, spreading, migration and neurite outgrowth. J Cell Physiol. 1991 Mar;146(3):451–459. doi: 10.1002/jcp.1041460316. [DOI] [PubMed] [Google Scholar]
  33. Tashiro K., Sephel G. C., Weeks B., Sasaki M., Martin G. R., Kleinman H. K., Yamada Y. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem. 1989 Sep 25;264(27):16174–16182. [PubMed] [Google Scholar]
  34. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES