Abstract
To determine whether resistance to chemoimmunotherapy is acquired during therapy, we investigated the effects of chemotherapeutic agents and anti-tumour polysaccharide, lentinan, on the progression of Rous sarcoma virus-induced S908.D2 fibrosarcomas. The chemoimmunotherapy was effective against the parental S908.D2-bearing mice. Nearly all the mice that were treated with cyclophosphamide (CY) and lentinan achieved complete tumour regression. Only a few of the mice that achieved complete regression of the primary tumours showed a recurrence of the tumour in regional lymph nodes. S908.D2-vp.1 was established from metastatic tumours that developed in the regional lymph nodes of parental S908.D2-bearing mice during therapy. S908.D2-vp.2-or vp.3 cells were sequentially derived in a similar way from S908.D2-vp.1-or-vp.2-bearing mice respectively, in which complete tumour regression at each primary site was achieved during therapy. These lines acquired resistance to CY and lentinan and also to 5-fluorouracil (5-FU)/5'-deoxy-5-fluorouracil and lentinan. No significant difference in either the sensitivity to 5-FU or 4-deoxycyclophosphamide in vitro or in the susceptibility to immune effector cells was observed between the parental and progressed lines (S908.D2-vp1 -vp3). There was an increase in the level of prostaglandin E2 (PGE2) in the progressed lines during repeated therapy (parental, 1171 pg ml(-1); vp.1, 2199 pg ml(-1); vp.2, 5500pg ml(-1); vp3, 16187 pg ml(-1)). There was no significant increase in the production of transforming growth factor beta (TGF-beta). The amount of interleukin-2 (IL-2) produced by spleen cells isolated from the S908.D2-vp.2-bearing mice was decreased compared with the amount produced by the parental S908.D2- bearing mice. Furthermore, combination therapy with lentinan and IL-2 achieved complete tumour regression in all the mice transplanted with S908.D2 progressed tumour lines, although IL-2 alone did not show any anti-tumour effects in either the S908.D2 parental or progressed lines. The findings suggest that the reduced production of IL-2 induced an increase in the production of the PGE2 by progressed tumour lines is involved in the acquisition of resistance.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balch C. M., Dougherty P. A., Cloud G. A., Tilden A. B. Prostaglandin E2-mediated suppression of cellular immunity in colon cancer patients. Surgery. 1984 Jan;95(1):71–77. [PubMed] [Google Scholar]
- Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
- Ceuppens J., Goodwin J. Prostaglandins and the immune response to cancer (review). Anticancer Res. 1981;1(2):71–78. [PubMed] [Google Scholar]
- Cheifetz S., Weatherbee J. A., Tsang M. L., Anderson J. K., Mole J. E., Lucas R., Massagué J. The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell. 1987 Feb 13;48(3):409–415. doi: 10.1016/0092-8674(87)90192-9. [DOI] [PubMed] [Google Scholar]
- Cheng K. C., Loeb L. A. Genomic instability and tumor progression: mechanistic considerations. Adv Cancer Res. 1993;60:121–156. doi: 10.1016/s0065-230x(08)60824-6. [DOI] [PubMed] [Google Scholar]
- Chihara G., Hamuro J., Maeda Y., Arai Y., Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res. 1970 Nov;30(11):2776–2781. [PubMed] [Google Scholar]
- Doherty P. C., Knowles B. B., Wettstein P. J. Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T cell function. Adv Cancer Res. 1984;42:1–65. doi: 10.1016/s0065-230x(08)60455-8. [DOI] [PubMed] [Google Scholar]
- Goldie J. H., Coldman A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep. 1979 Nov-Dec;63(11-12):1727–1733. [PubMed] [Google Scholar]
- Gottesman M. M., Pastan I. The multidrug transporter, a double-edged sword. J Biol Chem. 1988 Sep 5;263(25):12163–12166. [PubMed] [Google Scholar]
- Hunter T. Cooperation between oncogenes. Cell. 1991 Jan 25;64(2):249–270. doi: 10.1016/0092-8674(91)90637-e. [DOI] [PubMed] [Google Scholar]
- Imamura F., Horai T., Mukai M., Shinkai K., Akedo H. Potentiation of invasive capacity of rat ascites hepatoma cells by adriamycin. Cancer Res. 1990 Apr 1;50(7):2018–2021. [PubMed] [Google Scholar]
- Johnson J. P., Riethmüller G., Schirrmacher V. Tumor immunology: Paul Ehrlich's heritage. Immunol Today. 1989 Aug;10(8):S35–S37. [PubMed] [Google Scholar]
- Kehrl J. H., Wakefield L. M., Roberts A. B., Jakowlew S., Alvarez-Mon M., Derynck R., Sporn M. B., Fauci A. S. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986 May 1;163(5):1037–1050. doi: 10.1084/jem.163.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer R. A., Zakher J., Kim G. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science. 1988 Aug 5;241(4866):694–697. doi: 10.1126/science.3399900. [DOI] [PubMed] [Google Scholar]
- Krause D. S., Deutsch C. Cyclic AMP directly inhibits IL-2 receptor expression in human T cells: expression of both p55 and p75 subunits is affected. J Immunol. 1991 Apr 1;146(7):2285–2296. [PubMed] [Google Scholar]
- Li X. F., Takiuchi H., Zou J. P., Katagiri T., Yamamoto N., Nagata T., Ono S., Fujiwara H., Hamaoka T. Transforming growth factor-beta (TGF-beta)-mediated immunosuppression in the tumor-bearing state: enhanced production of TGF-beta and a progressive increase in TGF-beta susceptibility of anti-tumor CD4+ T cell function. Jpn J Cancer Res. 1993 Mar;84(3):315–325. doi: 10.1111/j.1349-7006.1993.tb02873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahan M., Meunier J., Newby M., Young M. R. Prostaglandin E2 production by EL 4 leukemia cells from C57BL/6 mice: mechanism for tumor dissemination. J Natl Cancer Inst. 1985 Jan;74(1):191–195. [PubMed] [Google Scholar]
- McMillan T. J., Hart I. R. Can cancer chemotherapy enhance the malignant behaviour of tumours? Cancer Metastasis Rev. 1987;6(4):503–519. doi: 10.1007/BF00047465. [DOI] [PubMed] [Google Scholar]
- Mitchell M. S. Chemotherapy in combination with biomodulation: a 5-year experience with cyclophosphamide and interleukin-2. Semin Oncol. 1992 Apr;19(2 Suppl 4):80–87. [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hamada J. I., Hasegawa J., Kato M., Mizutani M., Ren J., Takeichi N., Kobayashi H. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge). Br J Cancer. 1992 Oct;66(4):635–639. doi: 10.1038/bjc.1992.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hasegawa J., Ishikawa M., Chiba I., Nakamura Y., Kobayashi H. Regression mechanisms of mouse fibrosarcoma cells after in vitro exposure to quercetin: diminution of tumorigenicity with a corresponding decrease in the production of prostaglandin E2. Cancer Immunol Immunother. 1990;31(6):358–364. doi: 10.1007/BF01741407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada F., Hosokawa M., Hasegawa J., Kuramitsu Y., Nakai K., Yuan L., Lao H., Kobayashi H., Takeichi N. Enhancement of in vitro prostaglandin E2 production by mouse fibrosarcoma cells after co-culture with various anti-tumour effector cells. Br J Cancer. 1994 Aug;70(2):233–238. doi: 10.1038/bjc.1994.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paciucci P. A., Holland J. F., Ryder J. S., Konefal R. G., Bekesi G. J., Odchimar R., Gordon R. Immunotherapy with interleukin-2 by constant infusion with and without adoptive cell transfer and with weekly doxorubicin. Cancer Treat Rev. 1989 Jun;16 (Suppl A):67–81. doi: 10.1016/0305-7372(89)90026-1. [DOI] [PubMed] [Google Scholar]
- Parhar R. S., Lala P. K. Amelioration of B16F10 melanoma lung metastasis in mice by a combination therapy with indomethacin and interleukin 2. J Exp Med. 1987 Jan 1;165(1):14–28. doi: 10.1084/jem.165.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phipps R. P., Stein S. H., Roper R. L. A new view of prostaglandin E regulation of the immune response. Immunol Today. 1991 Oct;12(10):349–352. doi: 10.1016/0167-5699(91)90064-Z. [DOI] [PubMed] [Google Scholar]
- Rappaport R. S., Dodge G. R. Prostaglandin E inhibits the production of human interleukin 2. J Exp Med. 1982 Mar 1;155(3):943–948. doi: 10.1084/jem.155.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T., Matsui H., Shibahara S., Kobayashi T., Morinaga Y., Kashima N., Yamasaki S., Hamuro J., Taniguchi T. New approaches for the high-level expression of human interleukin-2 cDNA in Escherichia coli. J Biochem. 1987 Feb;101(2):525–534. doi: 10.1093/oxfordjournals.jbchem.a121940. [DOI] [PubMed] [Google Scholar]
- Schimke R. T. Gene amplification, drug resistance, and cancer. Cancer Res. 1984 May;44(5):1735–1742. [PubMed] [Google Scholar]
- Suzuki M., Takatsuki F., Maeda Y. Y., Hamuro J., Chihara G. Antitumor and immunological activity of lentinan in comparison with LPS. Int J Immunopharmacol. 1994 May-Jun;16(5-6):463–468. doi: 10.1016/0192-0561(94)90037-x. [DOI] [PubMed] [Google Scholar]
- Tada T., Ohzeki S., Utsumi K., Takiuchi H., Muramatsu M., Li X. F., Shimizu J., Fujiwara H., Hamaoka T. Transforming growth factor-beta-induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol. 1991 Feb 1;146(3):1077–1082. [PubMed] [Google Scholar]
- Tanaka Y., Tevethia S. S. In vitro selection of SV40 T antigen epitope loss variants by site-specific cytotoxic T lymphocyte clones. J Immunol. 1988 Jun 15;140(12):4348–4354. [PubMed] [Google Scholar]
- Turver C. J., Brown R. C. The role of catalytic iron in asbestos induced lipid peroxidation and DNA-strand breakage in C3H10T1/2 cells. Br J Cancer. 1987 Aug;56(2):133–136. doi: 10.1038/bjc.1987.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogelstein B., Fearon E. R., Kern S. E., Hamilton S. R., Preisinger A. C., Nakamura Y., White R. Allelotype of colorectal carcinomas. Science. 1989 Apr 14;244(4901):207–211. doi: 10.1126/science.2565047. [DOI] [PubMed] [Google Scholar]
- Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125. doi: 10.1016/s0079-6603(08)60611-x. [DOI] [PubMed] [Google Scholar]
- Zimmerman R., Cerutti P. Active oxygen acts as a promoter of transformation in mouse embryo C3H/10T1/2/C18 fibroblasts. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2085–2087. doi: 10.1073/pnas.81.7.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
