Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Jul;74(2):264–268. doi: 10.1038/bjc.1996.349

P53 tumour-suppressor gene mutations are mainly localised on exon 7 in human primary and metastatic prostate cancer.

R Dahiya 1, G Deng 1, K M Chen 1, R M Chui 1, P C Haughney 1, P Narayan 1
PMCID: PMC2074577  PMID: 8688333

Abstract

Mutations in the p53 tumour-suppressor gene are among the most common genetic alterations in human cancers. In the present study we analysed the mutations in the p53 tumor-suppressor gene in 25 primary and 20 metastatic human prostate cancer specimens. DNA extracted from the paraffin-embedded sections was amplified by hot-start polymerase chain reaction, and p53 gene mutations in the conserved mid-region (exons 4-9) were examined using single-strand conformation polymorphism (SSCP) analysis and immunohistochemistry. In the present study, we used a novel hot-start PCR-SSCP technique using DNA Taq polymerase antibody, which eliminates primer-dimers and non-specific products. Because of this new technique, the results of PCR-SSCP showed very high resolution. Polymerase chain reaction products were sequenced directly for point mutations for the p53 gene. Mutations were found in 2 out of 25 primary prostate cancers (8%) and 4 out of 20 metastatic cancers (20%). Mutations were observed exclusively in exon 7 and not in exons 4, 5, 6, 8 or 9. Nuclear accumulation of p53 protein, determined by immunohistochemistry, correlated with the degree of metastasis in prostatic cancer.

Full text

PDF
264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  2. Brennan P., Kaba H., Keverne E. B. Olfactory recognition: a simple memory system. Science. 1990 Nov 30;250(4985):1223–1226. doi: 10.1126/science.2147078. [DOI] [PubMed] [Google Scholar]
  3. Carter B. S., Ewing C. M., Ward W. S., Treiger B. F., Aalders T. W., Schalken J. A., Epstein J. I., Isaacs W. B. Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8751–8755. doi: 10.1073/pnas.87.22.8751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen P. L., Chen Y. M., Bookstein R., Lee W. H. Genetic mechanisms of tumor suppression by the human p53 gene. Science. 1990 Dec 14;250(4987):1576–1580. doi: 10.1126/science.2274789. [DOI] [PubMed] [Google Scholar]
  5. Clore G. M., Omichinski J. G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A. M. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 1994 Jul 15;265(5170):386–391. doi: 10.1126/science.8023159. [DOI] [PubMed] [Google Scholar]
  6. Dahiya R., Itzkowitz S. H., Byrd J. C., Kim Y. S. ABH blood group antigen expression, synthesis, and degradation in human colonic adenocarcinoma cell lines. Cancer Res. 1989 Aug 15;49(16):4550–4556. [PubMed] [Google Scholar]
  7. Dahiya R., Itzkowitz S. H., Byrd J. C., Kim Y. S. Mucin oligosaccharide biosynthesis in human colonic cancerous tissues and cell lines. Cancer. 1992 Sep 15;70(6):1467–1476. doi: 10.1002/1097-0142(19920915)70:6<1467::aid-cncr2820700604>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  8. Dahiya R., Zhang D. Y., Ho R. J., Haughney P. C., Hayward S. W., Cunha G. R., Narayan P. Regression of LNCaP human prostate tumor xenografts in athymic nude mice by 13-cis-retinoic acid and androgen ablation. Biochem Mol Biol Int. 1995 Mar;35(3):487–498. [PubMed] [Google Scholar]
  9. Dinjens W. N., van der Weiden M. M., Schroeder F. H., Bosman F. T., Trapman J. Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer. 1994 Mar 1;56(5):630–633. doi: 10.1002/ijc.2910560504. [DOI] [PubMed] [Google Scholar]
  10. Donehower L. A., Harvey M., Slagle B. L., McArthur M. J., Montgomery C. A., Jr, Butel J. S., Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992 Mar 19;356(6366):215–221. doi: 10.1038/356215a0. [DOI] [PubMed] [Google Scholar]
  11. Dulić V., Kaufmann W. K., Wilson S. J., Tlsty T. D., Lees E., Harper J. W., Elledge S. J., Reed S. I. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell. 1994 Mar 25;76(6):1013–1023. doi: 10.1016/0092-8674(94)90379-4. [DOI] [PubMed] [Google Scholar]
  12. Dutta A., Ruppert J. M., Aster J. C., Winchester E. Inhibition of DNA replication factor RPA by p53. Nature. 1993 Sep 2;365(6441):79–82. doi: 10.1038/365079a0. [DOI] [PubMed] [Google Scholar]
  13. Eliyahu D., Michalovitz D., Eliyahu S., Pinhasi-Kimhi O., Oren M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8763–8767. doi: 10.1073/pnas.86.22.8763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Finlay C. A., Hinds P. W., Levine A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989 Jun 30;57(7):1083–1093. doi: 10.1016/0092-8674(89)90045-7. [DOI] [PubMed] [Google Scholar]
  15. Gao X., Zacharek A., Salkowski A., Grignon D. J., Sakr W., Porter A. T., Honn K. V. Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 1995 Mar 1;55(5):1002–1005. [PubMed] [Google Scholar]
  16. Harris C. C., Hollstein M. Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 1993 Oct 28;329(18):1318–1327. doi: 10.1056/NEJM199310283291807. [DOI] [PubMed] [Google Scholar]
  17. Isaacs W. B., Carter B. S., Ewing C. M. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991 Sep 1;51(17):4716–4720. [PubMed] [Google Scholar]
  18. Kern S. E., Pietenpol J. A., Thiagalingam S., Seymour A., Kinzler K. W., Vogelstein B. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science. 1992 May 8;256(5058):827–830. doi: 10.1126/science.1589764. [DOI] [PubMed] [Google Scholar]
  19. Mack D. H., Vartikar J., Pipas J. M., Laimins L. A. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature. 1993 May 20;363(6426):281–283. doi: 10.1038/363281a0. [DOI] [PubMed] [Google Scholar]
  20. Mietz J. A., Unger T., Huibregtse J. M., Howley P. M. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J. 1992 Dec;11(13):5013–5020. doi: 10.1002/j.1460-2075.1992.tb05608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyashita T., Harigai M., Hanada M., Reed J. C. Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res. 1994 Jun 15;54(12):3131–3135. [PubMed] [Google Scholar]
  22. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  23. Navone N. M., Troncoso P., Pisters L. L., Goodrow T. L., Palmer J. L., Nichols W. W., von Eschenbach A. C., Conti C. J. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst. 1993 Oct 20;85(20):1657–1669. doi: 10.1093/jnci/85.20.1657. [DOI] [PubMed] [Google Scholar]
  24. Pahl P. C. Remote Effects of Typhoid Fever Upon the Bones and Joints. Cal State J Med. 1905 Jul;3(7):223–223. [PMC free article] [PubMed] [Google Scholar]
  25. Peehl D. M. Oncogenes in prostate cancer. An update. Cancer. 1993 Feb 1;71(3 Suppl):1159–1164. doi: 10.1002/1097-0142(19930201)71:3+<1159::aid-cncr2820711439>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  26. Schärer E., Iggo R. Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res. 1992 Apr 11;20(7):1539–1545. doi: 10.1093/nar/20.7.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sharkey D. J., Scalice E. R., Christy K. G., Jr, Atwood S. M., Daiss J. L. Antibodies as thermolabile switches: high temperature triggering for the polymerase chain reaction. Biotechnology (N Y) 1994 May;12(5):506–509. doi: 10.1038/nbt0594-506. [DOI] [PubMed] [Google Scholar]
  28. Thompson S. J., Mellon K., Charlton R. G., Marsh C., Robinson M., Neal D. E. P53 and Ki-67 immunoreactivity in human prostate cancer and benign hyperplasia. Br J Urol. 1992 Jun;69(6):609–613. doi: 10.1111/j.1464-410x.1992.tb15632.x. [DOI] [PubMed] [Google Scholar]
  29. Van Veldhuizen P. J., Sadasivan R., Garcia F., Austenfeld M. S., Stephens R. L. Mutant p53 expression in prostate carcinoma. Prostate. 1993;22(1):23–30. doi: 10.1002/pros.2990220104. [DOI] [PubMed] [Google Scholar]
  30. Visakorpi T., Kallioniemi O. P., Heikkinen A., Koivula T., Isola J. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst. 1992 Jun 3;84(11):883–887. doi: 10.1093/jnci/84.11.883. [DOI] [PubMed] [Google Scholar]
  31. Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. doi: 10.1016/0092-8674(92)90421-8. [DOI] [PubMed] [Google Scholar]
  32. Xiong Y., Hannon G. J., Zhang H., Casso D., Kobayashi R., Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993 Dec 16;366(6456):701–704. doi: 10.1038/366701a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES