Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Jul;74(2):194–199. doi: 10.1038/bjc.1996.337

Metastatic potential of human melanoma cells in nude mice--characterisation of phenotype, cytokine secretion and tumour-associated antigens.

D Schadendorf 1, I Fichtner 1, A Makki 1, S Alijagic 1, M Küpper 1, U Mrowietz 1, B M Henz 1
PMCID: PMC2074587  PMID: 8688321

Abstract

Incidence and mortality of human malignant melanoma has risen rapidly over recent decades. Although the notorious resistance to treatment is characteristic for metastatic malignant melanoma, only a few experimental models have been established to study the metastatic cascade or to test new alternative treatment modalities. Thus, new human models are wanted. Here, we describe the metastatic behaviour of seven human melanoma cell lines derived from two primary cutaneous melanomas (WM 98-1, WM 1341) and five metastases established from liver (UKRV-Mel-4), skin (M7, M13), pleural effusion (UKRV-Mel-2) and lymph node (MV3). All cell lines were analysed for their capacity to grow in nude mice after s.c. and i.v. administration. M13 cells developed liver metastases spontaneously after s.c. injection, and subsequent passages of M13 and M7 melanoma cells caused liver metastases after i.v. injection, whereas MV3 and WM98-1 gave rise to lung metastases, using the same inoculation route. In contrast, WM 1341, UKRV-Mel-2 and UKRV-Mel-4 grew only very slowly in nude mice after s.c. injection and did not cause any metastases after i.v. or s.c. administration. The pattern of metastases or growth kinetics did not correlate with the interleukin 8 or tumour necrosis factor secretion of cell lines. Adhesion molecules and growth factor receptor expression on the cell lines differed widely, as determined by flow cytometry, with the low metastatic cell lines (UKRV-Mel-2, UKRV-Mel-4 and WM 1341) demonstrating a marked reduction in VLA-1 and VLA-5 expression compared with the metastatic lines (M7, M13, MV3 and WM 98-1). Expression of pigment-related proteins such as tyrosinase, TRP-1, TRP-2, Melan-A/MART-1, gp100, MAGE1 or MAGE-3 was not associated with growth and metastatic characteristics of the melanoma cell lines analysed. In conclusion, the established human melanoma cell lines exhibited diverse growth behaviour in nude mice in congruence with some early established prognostic markers such as VLA-1 and VLA-5. The xenografts provide good models for further study of metastatic processes as well as for evaluation of alternative treatment modalities including new pharmaceutical drugs and gene therapeutic targeting using tissue-specific gene regulatory elements for gene targeting.

Full text

PDF
194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmann D. L., Creagan E. T., Hahn R. G., Edmonson J. H., Bisel H. F., Schaid D. J. Complete responses and long-term survivals after systemic chemotherapy for patients with advanced malignant melanoma. Cancer. 1989 Jan 15;63(2):224–227. doi: 10.1002/1097-0142(19890115)63:2<224::aid-cncr2820630203>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  2. Artuc M., Nürnberg W., Czarnetzki B. M., Schadendorf D. Characterization of gene regulatory elements for selective gene expression in human melanoma cells. Biochem Biophys Res Commun. 1995 Aug 15;213(2):699–705. doi: 10.1006/bbrc.1995.2187. [DOI] [PubMed] [Google Scholar]
  3. Bonfil R. D., Vinyals A., Bustuoabad O. D., Llorens A., Benavides F. J., Gonzalez-Garrigues M., Fabra A. Stimulation of angiogenesis as an explanation of Matrigel-enhanced tumorigenicity. Int J Cancer. 1994 Jul 15;58(2):233–239. doi: 10.1002/ijc.2910580215. [DOI] [PubMed] [Google Scholar]
  4. Bouchard B., Del Marmol V., Jackson I. J., Cherif D., Dubertret L. Molecular characterization of a human tyrosinase-related-protein-2 cDNA. Patterns of expression in melanocytic cells. Eur J Biochem. 1994 Jan 15;219(1-2):127–134. doi: 10.1111/j.1432-1033.1994.tb19922.x. [DOI] [PubMed] [Google Scholar]
  5. Böhm M., Möller P., Kalbfleisch U., Worm M., Czarnetzki B. M., Schadendorf D. Lysis of allogeneic and autologous melanoma cells by IL-7-induced lymphokine-activated killer cells. Br J Cancer. 1994 Jul;70(1):54–59. doi: 10.1038/bjc.1994.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coulie P. G., Brichard V., Van Pel A., Wölfel T., Schneider J., Traversari C., Mattei S., De Plaen E., Lurquin C., Szikora J. P. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994 Jul 1;180(1):35–42. doi: 10.1084/jem.180.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. D'Urso C. M., Wang Z. G., Cao Y., Tatake R., Zeff R. A., Ferrone S. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J Clin Invest. 1991 Jan;87(1):284–292. doi: 10.1172/JCI114984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Danen E. H., Jansen K. F., Van Kraats A. A., Cornelissen I. M., Ruiter D. J., Van Muijen G. N. Alpha v-integrins in human melanoma: gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer. 1995 May 16;61(4):491–496. doi: 10.1002/ijc.2910610411. [DOI] [PubMed] [Google Scholar]
  9. Danen E. H., Ten Berge P. J., Van Muijen G. N., Van 't Hof-Grootenboer A. E., Bröcker E. B., Ruiter D. J. Emergence of alpha 5 beta 1 fibronectin- and alpha v beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology. 1994 Mar;24(3):249–256. doi: 10.1111/j.1365-2559.1994.tb00517.x. [DOI] [PubMed] [Google Scholar]
  10. Fidler I. J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev. 1986;5(1):29–49. doi: 10.1007/BF00049529. [DOI] [PubMed] [Google Scholar]
  11. Fodstad O., Kjønniksen I., Aamdal S., Nesland J. M., Boyd M. R., Pihl A. Extrapulmonary, tissue-specific metastasis formation in nude mice injected with FEMX-I human melanoma cells. Cancer Res. 1988 Aug 1;48(15):4382–4388. [PubMed] [Google Scholar]
  12. Gaugler B., Van den Eynde B., van der Bruggen P., Romero P., Gaforio J. J., De Plaen E., Lethé B., Brasseur F., Boon T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994 Mar 1;179(3):921–930. doi: 10.1084/jem.179.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamby C. V., Liao S. K., Kanamaru T., Ferrone S. Immunogenicity of human melanoma-associated antigens defined by murine monoclonal antibodies in allogeneic and xenogeneic hosts. Cancer Res. 1987 Oct 15;47(20):5284–5289. [PubMed] [Google Scholar]
  14. Hearing V. J., Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J. 1991 Nov;5(14):2902–2909. [PubMed] [Google Scholar]
  15. Herlyn M. Human melanoma: development and progression. Cancer Metastasis Rev. 1990 Sep;9(2):101–112. doi: 10.1007/BF00046337. [DOI] [PubMed] [Google Scholar]
  16. Herlyn M., Thurin J., Balaban G., Bennicelli J. L., Herlyn D., Elder D. E., Bondi E., Guerry D., Nowell P., Clark W. H. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 1985 Nov;45(11 Pt 2):5670–5676. [PubMed] [Google Scholar]
  17. Juhasz I., Albelda S. M., Elder D. E., Murphy G. F., Adachi K., Herlyn D., Valyi-Nagy I. T., Herlyn M. Growth and invasion of human melanomas in human skin grafted to immunodeficient mice. Am J Pathol. 1993 Aug;143(2):528–537. [PMC free article] [PubMed] [Google Scholar]
  18. Kawakami Y., Eliyahu S., Sakaguchi K., Robbins P. F., Rivoltini L., Yannelli J. R., Appella E., Rosenberg S. A. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994 Jul 1;180(1):347–352. doi: 10.1084/jem.180.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kwon B. S., Chintamaneni C., Kozak C. A., Copeland N. G., Gilbert D. J., Jenkins N., Barton D., Francke U., Kobayashi Y., Kim K. K. A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9228–9232. doi: 10.1073/pnas.88.20.9228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liotta L. A., Stetler-Stevenson W. G. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 1991 Sep 15;51(18 Suppl):5054s–5059s. [PubMed] [Google Scholar]
  21. Lu C., Kerbel R. S. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J Cell Biol. 1993 Mar;120(5):1281–1288. doi: 10.1083/jcb.120.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller N., Vile R. Targeted vectors for gene therapy. FASEB J. 1995 Feb;9(2):190–199. doi: 10.1096/fasebj.9.2.7781922. [DOI] [PubMed] [Google Scholar]
  23. Mortarini R., Gismondi A., Santoni A., Parmiani G., Anichini A. Role of the alpha 5 beta 1 integrin receptor in the proliferative response of quiescent human melanoma cells to fibronectin. Cancer Res. 1992 Aug 15;52(16):4499–4506. [PubMed] [Google Scholar]
  24. Rauth S., Kichina J., Green A., Bratescu L., Das Gupta T. K. Establishment of a human melanoma cell line lacking p53 expression and spontaneously metastasizing in nude mice. Anticancer Res. 1994 Nov-Dec;14(6B):2457–2463. [PubMed] [Google Scholar]
  25. Rodolfo M., Balsari A., Clemente C., Parmiani G., Fossati G. Tumorigenicity and dissemination of primary and metastatic human melanomas implanted into different sites in athymic nude mice. Invasion Metastasis. 1988;8(6):317–331. [PubMed] [Google Scholar]
  26. Schadendorf D., Gawlik C., Haney U., Ostmeier H., Suter L., Czarnetzki B. M. Tumour progression and metastatic behaviour in vivo correlates with integrin expression on melanocytic tumours. J Pathol. 1993 Aug;170(4):429–434. doi: 10.1002/path.1711700405. [DOI] [PubMed] [Google Scholar]
  27. Schadendorf D., Möller A., Algermissen B., Worm M., Sticherling M., Czarnetzki B. M. IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 1993 Sep 1;151(5):2667–2675. [PubMed] [Google Scholar]
  28. Shibata K., Takeda K., Tomita Y., Tagami H., Shibahara S. Downstream region of the human tyrosinase-related protein gene enhances its promoter activity. Biochem Biophys Res Commun. 1992 Apr 30;184(2):568–575. doi: 10.1016/0006-291x(92)90627-w. [DOI] [PubMed] [Google Scholar]
  29. Shoemaker R. H., Dykes D. J., Plowman J., Harrison S. D., Jr, Griswold D. P., Jr, Abbott B. J., Mayo J. G., Fodstad O., Boyd M. R. Practical spontaneous metastasis model for in vivo therapeutic studies using a human melanoma. Cancer Res. 1991 Jun 1;51(11):2837–2841. [PubMed] [Google Scholar]
  30. Singh R. K., Gutman M., Radinsky R., Bucana C. D., Fidler I. J. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res. 1994 Jun 15;54(12):3242–3247. [PubMed] [Google Scholar]
  31. Smith B., Selby P., Southgate J., Pittman K., Bradley C., Blair G. E. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet. 1991 Nov 16;338(8777):1227–1229. doi: 10.1016/0140-6736(91)92100-g. [DOI] [PubMed] [Google Scholar]
  32. Sticherling M., Schröder J. M., Christophers E. Production and characterization of monoclonal antibodies against the novel neutrophil activating peptide NAP/IL-8. J Immunol. 1989 Sep 1;143(5):1628–1634. [PubMed] [Google Scholar]
  33. Taguchi Y., Koyama I., Shibata T., Sukigara M., Omoto R. Accuracy of resistive and pulsatile indices in the diagnosis of graft rejection in renal allografts. Transplant Proc. 1994 Aug;26(4):1991–1992. [PubMed] [Google Scholar]
  34. Wagner S. N., Wagner C., Höfler H., Atkinson M. J., Goos M. Expression cloning of the cDNA encoding a melanoma-associated Ag recognized by mAb HMB-45. Identification as melanocyte-specific Pmel 17 cDNA. Lab Invest. 1995 Aug;73(2):229–235. [PubMed] [Google Scholar]
  35. Wang Z., Cao Y., Albino A. P., Zeff R. A., Houghton A., Ferrone S. Lack of HLA class I antigen expression by melanoma cells SK-MEL-33 caused by a reading frameshift in beta 2-microglobulin messenger RNA. J Clin Invest. 1993 Feb;91(2):684–692. doi: 10.1172/JCI116249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Welch D. R., Bisi J. E., Miller B. E., Conaway D., Seftor E. A., Yohem K. H., Gilmore L. B., Seftor R. E., Nakajima M., Hendrix M. J. Characterization of a highly invasive and spontaneously metastatic human malignant melanoma cell line. Int J Cancer. 1991 Jan 21;47(2):227–237. doi: 10.1002/ijc.2910470211. [DOI] [PubMed] [Google Scholar]
  37. Xie X., Brünner N., Jensen G., Albrectsen J., Gotthardsen B., Rygaard J. Comparative studies between nude and scid mice on the growth and metastatic behavior of xenografted human tumors. Clin Exp Metastasis. 1992 May;10(3):201–210. doi: 10.1007/BF00132752. [DOI] [PubMed] [Google Scholar]
  38. van Muijen G. N., Danen E. H., Veerkamp J. H., Ruiter D. J., Lesley J., van den Heuvel L. P. Glycoconjugate profile and CD44 expression in human melanoma cell lines with different metastatic capacity. Int J Cancer. 1995 Apr 10;61(2):241–248. doi: 10.1002/ijc.2910610217. [DOI] [PubMed] [Google Scholar]
  39. van Muijen G. N., Jansen K. F., Cornelissen I. M., Smeets D. F., Beck J. L., Ruiter D. J. Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int J Cancer. 1991 Apr 22;48(1):85–91. doi: 10.1002/ijc.2910480116. [DOI] [PubMed] [Google Scholar]
  40. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES