Abstract
Women with breast cancer and a family history of breast cancer and some with sporadic breast cancer are deficient in the repair of radiation-induced DNA damage compared with normal donors with no family history of breast cancer. DNA repair was measured indirectly by quantifying chromatid breaks in phytohaemagglutinin (PHA)-stimulated blood lymphocytes after either X-irradiation or UV-C exposure, with or without post treatment with the DNA repair inhibitor, 1-beta-D-arabinofuranosylcytosine (ara-C). We have correlated chromatid breaks with unrepaired DNA strand breaks using responses to X-irradiation of cells from xeroderma pigmentosum patients with well-characterised DNA repair defects or responses of repair-deficient mutant Chinese hamster ovary (CHO) cells with or without transfected human DNA repair genes. Deficient DNA repair appears to be a predisposing factor in familial breast cancer and in some sporadic breast cancers.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buller R. E., Anderson B., Connor J. P., Robinson R. Familial ovarian cancer. Gynecol Oncol. 1993 Nov;51(2):160–166. doi: 10.1006/gyno.1993.1265. [DOI] [PubMed] [Google Scholar]
- Collins A. R. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat Res. 1993 Jan;293(2):99–118. doi: 10.1016/0921-8777(93)90062-l. [DOI] [PubMed] [Google Scholar]
- DeBauche D. M., Pai G. S., Stanley W. S. Enhanced G2 chromatid radiosensitivity in dyskeratosis congenita fibroblasts. Am J Hum Genet. 1990 Feb;46(2):350–357. [PMC free article] [PubMed] [Google Scholar]
- Evans M. K., Robbins J. H., Ganges M. B., Tarone R. E., Nairn R. S., Bohr V. A. Gene-specific DNA repair in xeroderma pigmentosum complementation groups A, C, D, and F. Relation to cellular survival and clinical features. J Biol Chem. 1993 Mar 5;268(7):4839–4847. [PubMed] [Google Scholar]
- Eyfjörd J. E., Thorlacius S., Steinarsdottir M., Valgardsdottir R., Ogmundsdottir H. M., Anamthawat-Jonsson K. p53 abnormalities and genomic instability in primary human breast carcinomas. Cancer Res. 1995 Feb 1;55(3):646–651. [PubMed] [Google Scholar]
- Gantt R., Sanford K. K., Parshad R., Price F. M., Peterson W. D., Jr, Rhim J. S. Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture. Cancer Res. 1987 Mar 1;47(5):1390–1397. [PubMed] [Google Scholar]
- Hoeijmakers J. H., Bootsma D. DNA repair. Incisions for excision. Nature. 1994 Oct 20;371(6499):654–655. doi: 10.1038/371654a0. [DOI] [PubMed] [Google Scholar]
- Knight R. D., Parshad R., Price F. M., Tarone R. E., Sanford K. K. X-ray-induced chromatid damage in relation to DNA repair and cancer incidence in family members. Int J Cancer. 1993 Jun 19;54(4):589–593. doi: 10.1002/ijc.2910540412. [DOI] [PubMed] [Google Scholar]
- Kraemer K. H., Coon H. G., Petinga R. A., Barrett S. F., Rahe A. E., Robbins J. H. National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20014, USA. Proc Natl Acad Sci U S A. 1975 Jan;72(1):59–63. doi: 10.1073/pnas.72.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mozdarani H., Bryant P. E. Kinetics of chromatid aberrations in G2 ataxia-telangiectasia cells exposed to X-rays and ara A. Int J Radiat Biol. 1989 Jan;55(1):71–84. doi: 10.1080/09553008914550081. [DOI] [PubMed] [Google Scholar]
- Natarajan A. T., Obe G., van Zeeland A. A., Palitti F., Meijers M., Verdegaal-Immerzeel E. A. Molecular mechanisms involved in the production of chromosomal aberrations. II. Utilization of Neurospora endonuclease for the study of aberration production by X-rays in G1 and G2 stages of the cell cycle. Mutat Res. 1980 Feb;69(2):293–305. doi: 10.1016/0027-5107(80)90094-9. [DOI] [PubMed] [Google Scholar]
- Pandita T. K., Hittelman W. N. Evidence of a chromatin basis for increased mutagen sensitivity associated with multiple primary malignancies of the head and neck. Int J Cancer. 1995 May 29;61(5):738–743. doi: 10.1002/ijc.2910610524. [DOI] [PubMed] [Google Scholar]
- Parshad R., Price F. M., Pirollo K. F., Chang E. H., Sanford K. K. Cytogenetic response to G2-phase X irradiation in relation to DNA repair and radiosensitivity in a cancer-prone family with Li-Fraumeni syndrome. Radiat Res. 1993 Nov;136(2):236–240. [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5612–5616. doi: 10.1073/pnas.80.18.5612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Jones G. M., Tarone R. E. G2 chromosomal radiosensitivity of ataxia-telangiectasia heterozygotes. Cancer Genet Cytogenet. 1985 Jan 1;14(1-2):163–168. doi: 10.1016/0165-4608(85)90227-4. [DOI] [PubMed] [Google Scholar]
- Parshad R., Sanford K. K., Price F. M., Rhim J. S., Tarone R. E., Fusenig N. E., Boukamp P. Association of deficient DNA repair during G2 phase with progression from benign to malignant state in a line of human skin keratinocytes transfected with ras oncogene. Carcinogenesis. 1994 Jan;15(1):33–37. doi: 10.1093/carcin/15.1.33. [DOI] [PubMed] [Google Scholar]
- Parshad R., Tarone R. E., Price F. M., Sanford K. K. Cytogenetic evidence for differences in DNA incision activity in xeroderma pigmentosum group A, C and D cells after X-irradiation during G2 phase. Mutat Res. 1993 Aug;294(2):149–155. doi: 10.1016/0921-8777(93)90023-a. [DOI] [PubMed] [Google Scholar]
- Petinga R. A., Andrews A. D., Tarone R. E., Robbins J. H. Typical xeroderma pigmentosum complementation group A fibroblasts have detectable ultraviolet light-induced unscheduled DNA synthesis. Biochim Biophys Acta. 1977 Dec 14;479(4):400–410. doi: 10.1016/0005-2787(77)90033-8. [DOI] [PubMed] [Google Scholar]
- Preston G. A., Payne H. S., Preston R. J. Isolation and characterization of a 1-beta-D-arabinofuranosylcytosine-resistant Chinese hamster ovary cell mutant that is also X-ray sensitive and is noncomplementary with ataxia telangiectasia cells. Cancer Res. 1992 Jan 15;52(2):319–327. [PubMed] [Google Scholar]
- Preston R. J. The effect of cytosine arabinoside on the frequency of X-ray-induced chromosome aberrations in normal human leukocytes. Mutat Res. 1980 Jan;69(1):71–79. doi: 10.1016/0027-5107(80)90177-3. [DOI] [PubMed] [Google Scholar]
- Robbins J. H., Kraemer K. H., Lutzner M. A., Festoff B. W., Coon H. G. Xeroderma pigmentosum. An inherited diseases with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann Intern Med. 1974 Feb;80(2):221–248. doi: 10.7326/0003-4819-80-2-221. [DOI] [PubMed] [Google Scholar]
- Sanford K. K., Parshad R., Gantt R., Tarone R. E., Jones G. M., Price F. M. Factors affecting and significance of G2 chromatin radiosensitivity in predisposition to cancer. Int J Radiat Biol. 1989 Jun;55(6):963–981. doi: 10.1080/09553008914551001. [DOI] [PubMed] [Google Scholar]
- Sanford K. K., Parshad R., Price F. M., Jones G. M., Tarone R. E., Eierman L., Hale P., Waldmann T. A. Enhanced chromatid damage in blood lymphocytes after G2 phase x irradiation, a marker of the ataxia-telangiectasia gene. J Natl Cancer Inst. 1990 Jun 20;82(12):1050–1054. doi: 10.1093/jnci/82.12.1050. [DOI] [PubMed] [Google Scholar]
- Sanford K. K., Parshad R., Price F. M., Tarone R. E., Schapiro M. B. X-ray-induced chromatid damage in cells from Down syndrome and Alzheimer disease patients in relation to DNA repair and cancer proneness. Cancer Genet Cytogenet. 1993 Oct 1;70(1):25–30. doi: 10.1016/0165-4608(93)90127-8. [DOI] [PubMed] [Google Scholar]
- Sanford K. K., Price F. M., Rhim J. S., Stampfer M. R., Parshad R. Role of DNA repair in malignant neoplastic transformation of human mammary epithelial cells in culture. Carcinogenesis. 1992 Jul;13(7):1137–1141. doi: 10.1093/carcin/13.7.1137. [DOI] [PubMed] [Google Scholar]
- Sanford K. K., Tarone R. E., Parshad R., Tucker M. A., Greene M. H., Jones G. M. Hypersensitivity to G2 chromatid radiation damage in familial dysplastic naevus syndrome. Lancet. 1987 Nov 14;2(8568):1111–1116. doi: 10.1016/s0140-6736(87)91546-7. [DOI] [PubMed] [Google Scholar]
- Satoh M. S., Jones C. J., Wood R. D., Lindahl T. DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6335–6339. doi: 10.1073/pnas.90.13.6335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott D., Spreadborough A., Levine E., Roberts S. A. Genetic predisposition in breast cancer. Lancet. 1994 Nov 19;344(8934):1444–1444. doi: 10.1016/s0140-6736(94)90615-7. [DOI] [PubMed] [Google Scholar]
- Smith M. L., Chen I. T., Zhan Q., O'Connor P. M., Fornace A. J., Jr Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene. 1995 Mar 16;10(6):1053–1059. [PubMed] [Google Scholar]
- Squires S., Johnson R. T. Kinetic analysis of UV-induced incision discriminates between fibroblasts from different xeroderma pigmentosum complementation groups, XPA heterozygotes and normal individuals. Mutat Res. 1988 Mar;193(2):181–192. doi: 10.1016/0167-8817(88)90048-x. [DOI] [PubMed] [Google Scholar]
- Srivastava S., Zou Z. Q., Pirollo K., Blattner W., Chang E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990 Dec 20;348(6303):747–749. doi: 10.1038/348747a0. [DOI] [PubMed] [Google Scholar]
- Takai S., Price F. M., Sanford K. K., Tarone R. E., Parshad R. Persistence of chromatid damage after G2 phase X-irradiation in lymphoblastoid cells from Gardner's syndrome. Carcinogenesis. 1990 Aug;11(8):1425–1428. doi: 10.1093/carcin/11.8.1425. [DOI] [PubMed] [Google Scholar]
- Troelstra C., Hesen W., Bootsma D., Hoeijmakers J. H. Structure and expression of the excision repair gene ERCC6, involved in the human disorder Cockayne's syndrome group B. Nucleic Acids Res. 1993 Feb 11;21(3):419–426. doi: 10.1093/nar/21.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troelstra C., van Gool A., de Wit J., Vermeulen W., Bootsma D., Hoeijmakers J. H. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell. 1992 Dec 11;71(6):939–953. doi: 10.1016/0092-8674(92)90390-x. [DOI] [PubMed] [Google Scholar]
- Vermeulen W., Scott R. J., Rodgers S., Müller H. J., Cole J., Arlett C. F., Kleijer W. J., Bootsma D., Hoeijmakers J. H., Weeda G. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet. 1994 Feb;54(2):191–200. [PMC free article] [PubMed] [Google Scholar]
- Wang X. W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J. M., Wang Z., Freidberg E. C., Evans M. K., Taffe B. G. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995 Jun;10(2):188–195. doi: 10.1038/ng0695-188. [DOI] [PubMed] [Google Scholar]
- Weeda G., van Ham R. C., Vermeulen W., Bootsma D., van der Eb A. J., Hoeijmakers J. H. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell. 1990 Aug 24;62(4):777–791. doi: 10.1016/0092-8674(90)90122-u. [DOI] [PubMed] [Google Scholar]