Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Aug;74(3):432–438. doi: 10.1038/bjc.1996.377

Beta-adrenergic signalling in neoplastic lung type 2 cells: glucocorticoid-dependent and -independent defects.

K A Droms 1
PMCID: PMC2074634  PMID: 8695360

Abstract

Tumorigenic mouse lung-derived type 2 cell lines have large reductions in both beta-adrenergic-stimulated cAMP production and ligand binding to beta-adrenergic receptors. These tumorigenic cells are also relatively insensitive to glucocorticoids. Because glucocorticoids regulate both beta-adrenergic receptor expression and receptor coupling to the stimulatory guanine nucleotide binding protein Gs interactions between the glucocorticoid and beta-adrenergic signalling systems were examined. This study demonstrates that beta-adrenergic ligand binding and agonist sensitivity are increased in a tumorigenic cell line stably expressing a normal glucocorticoid receptor transgene. However, although the transfected tumour cells and non-tumorigenic cells have similar amounts and affinities of beta-adrenergic agonist and antagonist binding, similar amounts of Gs subunits and similar forskolin-stimulated adenylyl cyclase activities, the former remain much less isoproterenol responsive. Competition binding studies demonstrate that tumour cell beta-adrenergic receptors have both high- and low-affinity agonist binding but are functionally uncoupled from Gs. This uncoupling may involve an alteration in Gs, as guanine nucleotides exhibit a reduced ability to stimulate adenylyl cyclase. Thus, some aspects of tumorigenic cell dysfunction in beta-adrenergic signalling can be ameliorated by interactions with the glucocorticoid pathway, but additional defects are also involved.

Full text

PDF
432

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes P., Jacobs M., Roberts J. M. Glucocorticoids preferentially increase fetal alveolar beta-adrenoreceptors: autoradiographic evidence. Pediatr Res. 1984 Nov;18(11):1191–1194. doi: 10.1203/00006450-198411000-00028. [DOI] [PubMed] [Google Scholar]
  2. Bentel J. M., Lykke A. W., Smith G. J. Cloned murine non-malignant, spontaneously transformed and chemical tumour-derived cell lines related to the type 2 pneumocyte. Cell Biol Int Rep. 1989 Sep;13(9):729–738. doi: 10.1016/0309-1651(89)90050-7. [DOI] [PubMed] [Google Scholar]
  3. Blumer K. J., Thorner J. Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4363–4367. doi: 10.1073/pnas.87.11.4363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bond R. A., Leff P., Johnson T. D., Milano C. A., Rockman H. A., McMinn T. R., Apparsundaram S., Hyek M. F., Kenakin T. P., Allen L. F. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor. Nature. 1995 Mar 16;374(6519):272–276. doi: 10.1038/374272a0. [DOI] [PubMed] [Google Scholar]
  5. Cheng J. B., Goldfien A., Ballard P. L., Roberts J. M. Glucocorticoids increase pulmonary beta-adrenergic receptors in fetal rabbit. Endocrinology. 1980 Nov;107(5):1646–1648. doi: 10.1210/endo-107-5-1646. [DOI] [PubMed] [Google Scholar]
  6. Cheung A. H., Sigal I. S., Dixon R. A., Strader C. D. Agonist-promoted sequestration of the beta 2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol Pharmacol. 1989 Jan;35(1):132–138. [PubMed] [Google Scholar]
  7. Collins S., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J Biol Chem. 1988 Jul 5;263(19):9067–9070. [PubMed] [Google Scholar]
  8. Cook P. W., Swanson K. T., Edwards C. P., Firestone G. L. Glucocorticoid receptor-dependent inhibition of cellular proliferation in dexamethasone-resistant and hypersensitive rat hepatoma cell variants. Mol Cell Biol. 1988 Apr;8(4):1449–1459. doi: 10.1128/mcb.8.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  10. Davies A. O., Lefkowitz R. J. Agonist-promoted high affinity state of the beta-adrenergic receptor in human neutrophils: modulation by corticosteroids. J Clin Endocrinol Metab. 1981 Oct;53(4):703–708. doi: 10.1210/jcem-53-4-703. [DOI] [PubMed] [Google Scholar]
  11. Davies A. O., Lefkowitz R. J. Regulation of beta-adrenergic receptors by steroid hormones. Annu Rev Physiol. 1984;46:119–130. doi: 10.1146/annurev.ph.46.030184.001003. [DOI] [PubMed] [Google Scholar]
  12. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  13. Downs R. W., Jr, Aurbach G. D. The effects of forskolin on adenylate cyclase in S49 wild type and cyc- cells. J Cyclic Nucleotide Res. 1982;8(4):235–242. [PubMed] [Google Scholar]
  14. Droms K. A. Dexamethasone enhances colonization of soft agar by tumorigenic mouse lung-derived cell lines. Cancer Lett. 1995 Aug 16;95(1-2):99–103. doi: 10.1016/0304-3835(95)03870-3. [DOI] [PubMed] [Google Scholar]
  15. Droms K. A., Haley B. E., Smith G. J., Malkinson A. M. Decreased 8N3-[gamma-32P]GTP photolabeling of Gs alpha in tumorigenic lung epithelial cell lines: association with decreased hormone responsiveness and loss of contact-inhibited growth. Exp Cell Res. 1989 Jun;182(2):330–339. doi: 10.1016/0014-4827(89)90238-3. [DOI] [PubMed] [Google Scholar]
  16. Droms K. A., Hanson L. A., Malkinson A. M., Beer D. G. Altered dexamethasone responsiveness and loss of growth control in tumorigenic mouse lung cell lines. Int J Cancer. 1993 Apr 1;53(6):1017–1022. doi: 10.1002/ijc.2910530627. [DOI] [PubMed] [Google Scholar]
  17. Harris B. A., Robishaw J. D., Mumby S. M., Gilman A. G. Molecular cloning of complementary DNA for the alpha subunit of the G protein that stimulates adenylate cyclase. Science. 1985 Sep 20;229(4719):1274–1277. doi: 10.1126/science.3839937. [DOI] [PubMed] [Google Scholar]
  18. Johnson G. S., Jaworski C. J. Glucocorticoids increase GTP-dependent adenylate cyclase activity in cultured fibroblasts. Mol Pharmacol. 1983 May;23(3):648–652. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lamb N. J., Cavadore J. C., Labbe J. C., Maurer R. A., Fernandez A. Inhibition of cAMP-dependent protein kinase plays a key role in the induction of mitosis and nuclear envelope breakdown in mammalian cells. EMBO J. 1991 Jun;10(6):1523–1533. doi: 10.1002/j.1460-2075.1991.tb07672.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lange-Carter C. A., Droms K. A., Vuillequez J. J., Malkinson A. M. Differential responsiveness to agents which stimulate cAMP production in normal versus neoplastic mouse lung epithelial cells. Cancer Lett. 1992 Dec 24;67(2-3):139–144. doi: 10.1016/0304-3835(92)90137-k. [DOI] [PubMed] [Google Scholar]
  22. Levitzki A. From epinephrine to cyclic AMP. Science. 1988 Aug 12;241(4867):800–806. doi: 10.1126/science.2841758. [DOI] [PubMed] [Google Scholar]
  23. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  24. Okamura N., Terayama H. Comparison of the epinephrine-mediated activation of adenylate cyclase in plasma membranes from liver and ascites hepatomas of rats. Biochim Biophys Acta. 1976 Dec 2;455(2):297–314. doi: 10.1016/0005-2736(76)90306-0. [DOI] [PubMed] [Google Scholar]
  25. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971 Mar 25;246(6):1872–1876. [PubMed] [Google Scholar]
  26. Valverius P., Hoffman P. L., Tabakoff B. Effect of ethanol on mouse cerebral cortical beta-adrenergic receptors. Mol Pharmacol. 1987 Aug;32(1):217–222. [PubMed] [Google Scholar]
  27. Viallet J., Sharoni Y., Frucht H., Jensen R. T., Minna J. D., Sausville E. A. Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of human small-cell lung cancer. J Clin Invest. 1990 Dec;86(6):1904–1912. doi: 10.1172/JCI114923. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES