Abstract
Approximately 70% of patients with prostate cancer develop bone metastases in the advanced state of the disease. In the present study, we sought to test the hypothesis that prostatic cancer cells produce factors that inhibit the mineralisation process in vitro, decreasing the content of type I collagen in rat fetal calvaria osteoblasts. We investigated the capacity of conditioned media (CM) from the human prostatic tumour cell line PC-3 to inhibit the expression of the differentiation programme on osteoblasts in culture, with a primary focus on type I collagen synthesis and degradation. Our results show that PC-3 CM inhibits collagen synthesis and stimulates the production of interstitial collagenase from osteoblasts. A consequential decrease in the content of immunoreactive type I collagen was observed. We have previously demonstrated that PC-3 CM blocks osteoblast differentiation in culture. We propose that under the effect of factors present in PC-3 CM, osteoblastic cells retain the undifferentiated phenotype.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
- Binderman I., Greene R. M., Pennypacker J. P. Calcification of differentiating skeletal mesenchyme in vitro. Science. 1979 Oct 12;206(4415):222–225. doi: 10.1126/science.482937. [DOI] [PubMed] [Google Scholar]
- Charhon S. A., Chapuy M. C., Delvin E. E., Valentin-Opran A., Edouard C. M., Meunier P. J. Histomorphometric analysis of sclerotic bone metastases from prostatic carcinoma special reference to osteomalacia. Cancer. 1983 Mar 1;51(5):918–924. doi: 10.1002/1097-0142(19830301)51:5<918::aid-cncr2820510526>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
- Chiarodo A. National Cancer Institute roundtable on prostate cancer: future research directions. Cancer Res. 1991 May 1;51(9):2498–2505. [PubMed] [Google Scholar]
- Delaisse J. M., Eeckhout Y., Vaes G. Bone-resorbing agents affect the production and distribution of procollagenase as well as the activity of collagenase in bone tissue. Endocrinology. 1988 Jul;123(1):264–276. doi: 10.1210/endo-123-1-264. [DOI] [PubMed] [Google Scholar]
- Ecarot-Charrier B., Glorieux F. H., van der Rest M., Pereira G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983 Mar;96(3):639–643. doi: 10.1083/jcb.96.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerstenfeld L. C., Chipman S. D., Kelly C. M., Hodgens K. J., Lee D. D., Landis W. J. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J Cell Biol. 1988 Mar;106(3):979–989. doi: 10.1083/jcb.106.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glimcher M. J. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):479–508. doi: 10.1098/rstb.1984.0041. [DOI] [PubMed] [Google Scholar]
- Kaighn M. E., Narayan K. S., Ohnuki Y., Lechner J. F., Jones L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol. 1979 Jul;17(1):16–23. [PubMed] [Google Scholar]
- Koutsilieris M., Rabbani S. A., Bennett H. P., Goltzman D. Characteristics of prostate-derived growth factors for cells of the osteoblast phenotype. J Clin Invest. 1987 Oct;80(4):941–946. doi: 10.1172/JCI113186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koutsilieris M., Rabbani S. A., Goltzman D. Effects of human prostatic mitogens on rat bone cells and fibroblasts. J Endocrinol. 1987 Dec;115(3):447–454. doi: 10.1677/joe.0.1150447. [DOI] [PubMed] [Google Scholar]
- Lynch M. P., Stein J. L., Stein G. S., Lian J. B. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995 Jan;216(1):35–45. doi: 10.1006/excr.1995.1005. [DOI] [PubMed] [Google Scholar]
- Mackay A. R., Hartzler J. L., Pelina M. D., Thorgeirsson U. P. Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen. J Biol Chem. 1990 Dec 15;265(35):21929–21934. [PubMed] [Google Scholar]
- Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B., Stein G. S. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol. 1990 Jun;143(3):420–430. doi: 10.1002/jcp.1041430304. [DOI] [PubMed] [Google Scholar]
- Owen T. A., Holthuis J., Markose E., van Wijnen A. J., Wolfe S. A., Grimes S. R., Lian J. B., Stein G. S. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5129–5133. doi: 10.1073/pnas.87.13.5129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkel V. S., Mohan S., Herring S. J., Baylink D. J., Linkhart T. A. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells. Cancer Res. 1990 Nov 1;50(21):6902–6907. [PubMed] [Google Scholar]
- Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
- Rabbani S. A., Desjardins J., Bell A. W., Banville D., Mazar A., Henkin J., Goltzman D. An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast-like cells. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1058–1064. doi: 10.1016/s0006-291x(05)80893-9. [DOI] [PubMed] [Google Scholar]
- Rifas L., Fausto A., Scott M. J., Avioli L. V., Welgus H. G. Expression of metalloproteinases and tissue inhibitors of metalloproteinases in human osteoblast-like cells: differentiation is associated with repression of metalloproteinase biosynthesis. Endocrinology. 1994 Jan;134(1):213–221. doi: 10.1210/endo.134.1.8275936. [DOI] [PubMed] [Google Scholar]
- Roach H. I. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol Int. 1994 Jun;18(6):617–628. doi: 10.1006/cbir.1994.1088. [DOI] [PubMed] [Google Scholar]
- Sakai T., Gross J. Some properties of the products of reaction of tadpole collagenase with collagen. Biochemistry. 1967 Feb;6(2):518–528. doi: 10.1021/bi00854a021. [DOI] [PubMed] [Google Scholar]
- Stein G. S., Lian J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev. 1993 Aug;14(4):424–442. doi: 10.1210/edrv-14-4-424. [DOI] [PubMed] [Google Scholar]
- Varghese S., Rydziel S., Jeffrey J. J., Canalis E. Regulation of interstitial collagenase expression and collagen degradation by retinoic acid in bone cells. Endocrinology. 1994 Jun;134(6):2438–2444. doi: 10.1210/endo.134.6.8194470. [DOI] [PubMed] [Google Scholar]


