Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Aug;74(4):555–561. doi: 10.1038/bjc.1996.400

TP53 mutation analyses on breast carcinomas: a study of paraffin-embedded archival material.

S Gretarsdottir 1, L Tryggvadottir 1, J G Jonasson 1, H Sigurdsson 1, K Olafsdottir 1, B A Agnarsson 1, H Ogmundsdottir 1, J E Eyfjörd 1
PMCID: PMC2074687  PMID: 8761369

Abstract

The aim of this investigation was to examine the possibility of analysing TP53 mutations in archival paraffin-embedded material with the constant denaturant gel electrophoresis (CDGE) method. We extracted DNA from 193 archival primary breast carcinoma samples, diagnosed in 1981-83; further analysis was possible for 186 of these. TP53 mutations in exons 5-8 were detected with CDGE in 30 samples (16.1%) and 17 of these mutations were confirmed by sequencing. Immunohistochemistry demonstrated TP53 nuclear accumulation in 58 tumours (31%). A strong association between the presence of TP53 mutations and TP53 immunostaining was observed (P < 0.001). Our mutation and immunohistochemistry results are in agreement with other findings based on fresh tumour tissue. TP53 abnormalities were significantly related to high S-phase fraction, low oestrogen receptor (ER) content and high tumour grade. Survival of patients with TP53 abnormalities, in the group as a whole, did not differ from patients with normal TP53. Our study did, however, show that patients with abnormal TP53 had a significantly shorter post-recurrence survival (P = 0.005) than patients with normal TP53.

Full text

PDF
555

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen T. I., Holm R., Nesland J. M., Heimdal K. R., Ottestad L., Børresen A. L. Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer. 1993 Sep;68(3):540–548. doi: 10.1038/bjc.1993.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes D. M., Dublin E. A., Fisher C. J., Levison D. A., Millis R. R. Immunohistochemical detection of p53 protein in mammary carcinoma: an important new independent indicator of prognosis? Hum Pathol. 1993 May;24(5):469–476. doi: 10.1016/0046-8177(93)90158-d. [DOI] [PubMed] [Google Scholar]
  3. Barr L. C., Baum M. Time to abandon TNM staging of breast cancer? Lancet. 1992 Apr 11;339(8798):915–917. doi: 10.1016/0140-6736(92)90941-u. [DOI] [PubMed] [Google Scholar]
  4. Bergh J., Norberg T., Sjögren S., Lindgren A., Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995 Oct;1(10):1029–1034. doi: 10.1038/nm1095-1029. [DOI] [PubMed] [Google Scholar]
  5. Borg A., Lennerstrand J., Stenmark-Askmalm M., Fernö M., Brisfors A., Ohrvik A., Stål O., Killander D., Lane D., Brundell J. Prognostic significance of p53 overexpression in primary breast cancer; a novel luminometric immunoassay applicable on steroid receptor cytosols. Br J Cancer. 1995 May;71(5):1013–1017. doi: 10.1038/bjc.1995.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Børresen A. L., Andersen T. I., Eyfjörd J. E., Cornelis R. S., Thorlacius S., Borg A., Johansson U., Theillet C., Scherneck S., Hartman S. TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosomes Cancer. 1995 Sep;14(1):71–75. doi: 10.1002/gcc.2870140113. [DOI] [PubMed] [Google Scholar]
  7. Børresen A. L., Hovig E., Smith-Sørensen B., Malkin D., Lystad S., Andersen T. I., Nesland J. M., Isselbacher K. J., Friend S. H. Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8405–8409. doi: 10.1073/pnas.88.19.8405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chou Q., Russell M., Birch D. E., Raymond J., Bloch W. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Res. 1992 Apr 11;20(7):1717–1723. doi: 10.1093/nar/20.7.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham J. M., Ingle J. N., Jung S. H., Cha S. S., Wold L. E., Farr G., Witzig T. E., Krook J. E., Wieand H. S., Kovach J. S. p53 gene expression in node-positive breast cancer: relationship to DNA ploidy and prognosis. J Natl Cancer Inst. 1994 Dec 21;86(24):1871–1873. doi: 10.1093/jnci/86.24.1871. [DOI] [PubMed] [Google Scholar]
  10. Elledge R. M., Fuqua S. A., Clark G. M., Pujol P., Allred D. C. William L. McGuire Memorial Symposium. The role and prognostic significance of p53 gene alterations in breast cancer. Breast Cancer Res Treat. 1993;27(1-2):95–102. doi: 10.1007/BF00683196. [DOI] [PubMed] [Google Scholar]
  11. Eyfjörd J. E., Thorlacius S., Steinarsdottir M., Valgardsdottir R., Ogmundsdottir H. M., Anamthawat-Jonsson K. p53 abnormalities and genomic instability in primary human breast carcinomas. Cancer Res. 1995 Feb 1;55(3):646–651. [PubMed] [Google Scholar]
  12. Fisher C. J., Gillett C. E., Vojtesek B., Barnes D. M., Millis R. R. Problems with p53 immunohistochemical staining: the effect of fixation and variation in the methods of evaluation. Br J Cancer. 1994 Jan;69(1):26–31. doi: 10.1038/bjc.1994.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  14. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  15. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  16. Kerr J. F., Winterford C. M., Harmon B. V. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994 Apr 15;73(8):2013–2026. doi: 10.1002/1097-0142(19940415)73:8<2013::aid-cncr2820730802>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  17. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  18. Lane D. P., Crawford L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979 Mar 15;278(5701):261–263. doi: 10.1038/278261a0. [DOI] [PubMed] [Google Scholar]
  19. Lipponen P., Ji H., Aaltomaa S., Syrjänen S., Syrjänen K. p53 protein expression in breast cancer as related to histopathological characteristics and prognosis. Int J Cancer. 1993 Aug 19;55(1):51–56. doi: 10.1002/ijc.2910550110. [DOI] [PubMed] [Google Scholar]
  20. Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  21. Lowe S. W., Bodis S., McClatchey A., Remington L., Ruley H. E., Fisher D. E., Housman D. E., Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science. 1994 Nov 4;266(5186):807–810. doi: 10.1126/science.7973635. [DOI] [PubMed] [Google Scholar]
  22. Lowe S. W., Schmitt E. M., Smith S. W., Osborne B. A., Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993 Apr 29;362(6423):847–849. doi: 10.1038/362847a0. [DOI] [PubMed] [Google Scholar]
  23. MacGrogan G., Bonichon F., de Mascarel I., Trojani M., Durand M., Avril A., Coindre J. M. Prognostic value of p53 in breast invasive ductal carcinoma: an immunohistochemical study on 942 cases. Breast Cancer Res Treat. 1995;36(1):71–81. doi: 10.1007/BF00690187. [DOI] [PubMed] [Google Scholar]
  24. McManus D. T., Yap E. P., Maxwell P., Russell S. E., Toner P. G., McGee J. O. p53 expression, mutation, and allelic deletion in ovarian cancer. J Pathol. 1994 Nov;174(3):159–168. doi: 10.1002/path.1711740304. [DOI] [PubMed] [Google Scholar]
  25. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992 Jun 26;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r. [DOI] [PubMed] [Google Scholar]
  26. Niwa K., Itoh M., Murase T., Morishita S., Itoh N., Mori H., Tamaya T. Alteration of p53 gene in ovarian carcinoma: clinicopathological correlation and prognostic significance. Br J Cancer. 1994 Dec;70(6):1191–1197. doi: 10.1038/bjc.1994.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith-Sørensen B., Gebhardt M. C., Kloen P., McIntyre J., Aguilar F., Cerutti P., Børresen A. L. Screening for TP53 mutations in osteosarcomas using constant denaturant gel electrophoresis (CDGE). Hum Mutat. 1993;2(4):274–285. doi: 10.1002/humu.1380020407. [DOI] [PubMed] [Google Scholar]
  28. Smith M. L., Chen I. T., Zhan Q., Bae I., Chen C. Y., Gilmer T. M., Kastan M. B., O'Connor P. M., Fornace A. J., Jr Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994 Nov 25;266(5189):1376–1380. doi: 10.1126/science.7973727. [DOI] [PubMed] [Google Scholar]
  29. Thorlacius S., Thorgilsson B., Björnsson J., Tryggvadottir L., Börresen A. L., Ogmundsdottir H. M., Eyfjörd J. E. TP53 mutations and abnormal p53 protein staining in breast carcinomas related to prognosis. Eur J Cancer. 1995 Oct;31A(11):1856–1861. doi: 10.1016/0959-8049(95)00399-4. [DOI] [PubMed] [Google Scholar]
  30. Wang J. L., Zhang Z. J., Hartman M., Smits A., Westermark B., Muhr C., Nistér M. Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer. 1995 Aug 22;64(4):223–228. doi: 10.1002/ijc.2910640402. [DOI] [PubMed] [Google Scholar]
  31. Wang X. W., Forrester K., Yeh H., Feitelson M. A., Gu J. R., Harris C. C. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2230–2234. doi: 10.1073/pnas.91.6.2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wang X. W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J. M., Wang Z., Freidberg E. C., Evans M. K., Taffe B. G. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995 Jun;10(2):188–195. doi: 10.1038/ng0695-188. [DOI] [PubMed] [Google Scholar]
  33. Yin Y., Tainsky M. A., Bischoff F. Z., Strong L. C., Wahl G. M. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell. 1992 Sep 18;70(6):937–948. doi: 10.1016/0092-8674(92)90244-7. [DOI] [PubMed] [Google Scholar]
  34. Zhan Q., Bae I., Kastan M. B., Fornace A. J., Jr The p53-dependent gamma-ray response of GADD45. Cancer Res. 1994 May 15;54(10):2755–2760. [PubMed] [Google Scholar]
  35. el-Deiry W. S., Harper J. W., O'Connor P. M., Velculescu V. E., Canman C. E., Jackman J., Pietenpol J. A., Burrell M., Hill D. E., Wang Y. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 1994 Mar 1;54(5):1169–1174. [PubMed] [Google Scholar]
  36. el-Deiry W. S., Tokino T., Velculescu V. E., Levy D. B., Parsons R., Trent J. M., Lin D., Mercer W. E., Kinzler K. W., Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993 Nov 19;75(4):817–825. doi: 10.1016/0092-8674(93)90500-p. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES