Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Sep;74(5):677–682. doi: 10.1038/bjc.1996.421

Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein.

A R Quesada 1, M D García Grávalos 1, J L Fernández Puentes 1
PMCID: PMC2074716  PMID: 8795567

Abstract

The effects of several members of the family of lamellarins, polyaromatic alkaloids isolated from tunicates belonging to the genus Didemnum, on the growth of several tumour cell lines and on P-glycoprotein (P-gp)-mediated multidrug resistance (MDR), were investigated. Cytotoxicity experiments of lamellarins were performed on a panel of tumour cell lines, including two multidrug-resistant cell lines. Some lamellarins showed good anti-tumour activity, with similar levels of cytotoxicity against both the resistant and their corresponding parental cell lines. Two lamellarins displayed a high potency against lung carcinoma cells. Studies of the resistance modifier activity of the different lamellarins at non-toxic concentrations were also carried out in cells exhibiting MDR, and lamellarin I was selected for the highest chemosensitising activity. At non-toxic doses, verapamil and lamellarin I effectively increased the cytotoxicity of doxorubicin, vinblastine and daunorubicin in a concentration-dependent manner in multidrug-resistant cells, but the potency of lamellarin I as a MDR modulator was 9- to 16-fold higher than that of verapamil. In vitro measurements of rhodamine 123 accumulation in the multidrug-resistant Lo Vo/Dx cells suggest that lamellarin I reverses MDR by directly inhibiting the P-gp-mediated drug efflux. This work underscores the possibility of using these marine-derived compounds as a potential new source of anti-tumoral drugs active on resistant cells as well as of non-toxic modulators of the MDR phenotype.

Full text

PDF
677

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arceci R. J. Clinical significance of P-glycoprotein in multidrug resistance malignancies. Blood. 1993 May 1;81(9):2215–2222. [PubMed] [Google Scholar]
  2. Beck W. T., Qian X. D. Photoaffinity substrates for P-glycoprotein. Biochem Pharmacol. 1992 Jan 9;43(1):89–93. doi: 10.1016/0006-2952(92)90665-6. [DOI] [PubMed] [Google Scholar]
  3. Benchimol S., Ling V. P-glycoprotein and tumor progression. J Natl Cancer Inst. 1994 Jun 1;86(11):814–816. doi: 10.1093/jnci/86.11.814. [DOI] [PubMed] [Google Scholar]
  4. Biedler J. L. Drug resistance: genotype versus phenotype--thirty-second G. H. A. Clowes Memorial Award Lecture. Cancer Res. 1994 Feb 1;54(3):666–678. [PubMed] [Google Scholar]
  5. Conforti G., Codegoni A. M., Scanziani E., Dolfini E., Dasdia T., Calza M., Caniatti M., Broggini M. Different vimentin expression in two clones derived from a human colocarcinoma cell line (LoVo) showing different sensitivity to doxorubicin. Br J Cancer. 1995 Mar;71(3):505–511. doi: 10.1038/bjc.1995.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ganapathi R., Grabowski D. Enhancement of sensitivity to adriamycin in resistant P388 leukemia by the calmodulin inhibitor trifluoperazine. Cancer Res. 1983 Aug;43(8):3696–3699. [PubMed] [Google Scholar]
  7. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  8. Grandi M., Geroni C., Giuliani F. C. Isolation and characterization of a human colon adenocarcinoma cell line resistant to doxorubicin. Br J Cancer. 1986 Sep;54(3):515–518. doi: 10.1038/bjc.1986.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jachez B., Boesch D., Grassberger M. A., Loor F. Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives. Anticancer Drugs. 1993 Apr;4(2):223–229. doi: 10.1097/00001813-199304000-00015. [DOI] [PubMed] [Google Scholar]
  10. Jachez B., Nordmann R., Loor F. Restoration of taxol sensitivity of multidrug-resistant cells by the cyclosporine SDZ PSC 833 and the cyclopeptolide SDZ 280-446. J Natl Cancer Inst. 1993 Mar 17;85(6):478–483. doi: 10.1093/jnci/85.6.478. [DOI] [PubMed] [Google Scholar]
  11. Kartner N., Evernden-Porelle D., Bradley G., Ling V. Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies. 1985 Aug 29-Sep 4Nature. 316(6031):820–823. doi: 10.1038/316820a0. [DOI] [PubMed] [Google Scholar]
  12. Keller R. P., Altermatt H. J., Nooter K., Poschmann G., Laissue J. A., Bollinger P., Hiestand P. C. SDZ PSC 833, a non-immunosuppressive cyclosporine: its potency in overcoming P-glycoprotein-mediated multidrug resistance of murine leukemia. Int J Cancer. 1992 Feb 20;50(4):593–597. doi: 10.1002/ijc.2910500418. [DOI] [PubMed] [Google Scholar]
  13. Loor F., Boesch D., Gavériaux C., Jachez B., Pourtier-Manzanedo A., Emmer G. SDZ 280-446, a novel semi-synthetic cyclopeptolide: in vitro and in vivo circumvention of the P-glycoprotein-mediated tumour cell multidrug resistance. Br J Cancer. 1992 Jan;65(1):11–18. doi: 10.1038/bjc.1992.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McBurney M. W., Whitmore G. F. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell. 1974 Jul;2(3):173–182. doi: 10.1016/0092-8674(74)90091-9. [DOI] [PubMed] [Google Scholar]
  15. Miller R. L., Bukowski R. M., Budd G. T., Purvis J., Weick J. K., Shepard K., Midha K. K., Ganapathi R. Clinical modulation of doxorubicin resistance by the calmodulin-inhibitor, trifluoperazine: a phase I/II trial. J Clin Oncol. 1988 May;6(5):880–888. doi: 10.1200/JCO.1988.6.5.880. [DOI] [PubMed] [Google Scholar]
  16. Miyamoto K., Inoko K., Wakusawa S., Kajita S., Hasegawa T., Takagi K., Koyama M. Inhibition of multidrug resistance by a new staurosporine derivative, NA-382, in vitro and in vivo. Cancer Res. 1993 Apr 1;53(7):1555–1559. [PubMed] [Google Scholar]
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  18. Nooter K., Herweijer H. Multidrug resistance (mdr) genes in human cancer. Br J Cancer. 1991 May;63(5):663–669. doi: 10.1038/bjc.1991.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ozols R. F., Cunnion R. E., Klecker R. W., Jr, Hamilton T. C., Ostchega Y., Parrillo J. E., Young R. C. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol. 1987 Apr;5(4):641–647. doi: 10.1200/JCO.1987.5.4.641. [DOI] [PubMed] [Google Scholar]
  20. Patel N. H., Rothenberg M. L. Multidrug resistance in cancer chemotherapy. Invest New Drugs. 1994;12(1):1–13. doi: 10.1007/BF00873229. [DOI] [PubMed] [Google Scholar]
  21. Pearce H. L., Safa A. R., Bach N. J., Winter M. A., Cirtain M. C., Beck W. T. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5128–5132. doi: 10.1073/pnas.86.13.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pennock G. D., Dalton W. S., Roeske W. R., Appleton C. P., Mosley K., Plezia P., Miller T. P., Salmon S. E. Systemic toxic effects associated with high-dose verapamil infusion and chemotherapy administration. J Natl Cancer Inst. 1991 Jan 16;83(2):105–110. doi: 10.1093/jnci/83.2.105. [DOI] [PubMed] [Google Scholar]
  23. Pourtier-Manzanedo A., Didier A. D., Muller C. D., Loor F. SDZ PSC 833 and SDZ 280-446 are the most active of various resistance-modifying agents in restoring rhodamine-123 retention within multidrug resistant P388 cells. Anticancer Drugs. 1992 Aug;3(4):419–425. doi: 10.1097/00001813-199208000-00017. [DOI] [PubMed] [Google Scholar]
  24. Quesada A. R., Barbacid M. M., Mira E., Aracil M., Márquez G. Chemosensitization and drug accumulation assays as complementary methods for the screening of multidrug resistance reversal agents. Cancer Lett. 1996 Jan 19;99(1):109–114. doi: 10.1016/0304-3835(95)04044-7. [DOI] [PubMed] [Google Scholar]
  25. Raderer M., Scheithauer W. Clinical trials of agents that reverse multidrug resistance. A literature review. Cancer. 1993 Dec 15;72(12):3553–3563. doi: 10.1002/1097-0142(19931215)72:12<3553::aid-cncr2820721203>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  26. Ramu A., Spanier R., Rahamimoff H., Fuks Z. Restoration of doxorubicin responsiveness in doxorubicin-resistant P388 murine leukaemia cells. Br J Cancer. 1984 Oct;50(4):501–507. doi: 10.1038/bjc.1984.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Toffoli G., Simone F., Corona G., Raschack M., Cappelletto B., Gigante M., Boiocchi M. Structure-activity relationship of verapamil analogs and reversal of multidrug resistance. Biochem Pharmacol. 1995 Oct 12;50(8):1245–1255. doi: 10.1016/0006-2952(95)02003-u. [DOI] [PubMed] [Google Scholar]
  28. Tsuruo T., Iida H., Nojiri M., Tsukagoshi S., Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983 Jun;43(6):2905–2910. [PubMed] [Google Scholar]
  29. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  30. Twentyman P. R., Bleehen N. M. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin [corrected]. Eur J Cancer. 1991;27(12):1639–1642. doi: 10.1016/0277-5379(91)90435-g. [DOI] [PubMed] [Google Scholar]
  31. Twentyman P. R. Modification of cytotoxic drug resistance by non-immuno-suppressive cyclosporins. Br J Cancer. 1988 Mar;57(3):254–258. doi: 10.1038/bjc.1988.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Twentyman P. R., Rhodes T., Rayner S. A comparison of rhodamine 123 accumulation and efflux in cells with P-glycoprotein-mediated and MRP-associated multidrug resistance phenotypes. Eur J Cancer. 1994;30A(9):1360–1369. doi: 10.1016/0959-8049(94)90187-2. [DOI] [PubMed] [Google Scholar]
  33. Zamora J. M., Pearce H. L., Beck W. T. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol. 1988 Apr;33(4):454–462. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES