Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Dec;174(23):7635–7641. doi: 10.1128/jb.174.23.7635-7641.1992

Carbon and energy metabolism of atp mutants of Escherichia coli.

P R Jensen 1, O Michelsen 1
PMCID: PMC207475  PMID: 1447134

Abstract

The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis.

Full text

PDF
7635

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen K. B., von Meyenburg K. Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol. 1980 Oct;144(1):114–123. doi: 10.1128/jb.144.1.114-123.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burstein C., Tiankova L., Kepes A. Respiratory control in Escherichia coli K 12. Eur J Biochem. 1979 Mar;94(2):387–392. doi: 10.1111/j.1432-1033.1979.tb12905.x. [DOI] [PubMed] [Google Scholar]
  3. Butlin J. D., Cox G. B., Gibson F. Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion- or calcium ion-stimulated adenosine triphosphatase. Biochem J. 1971 Aug;124(1):75–81. doi: 10.1042/bj1240075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csonka L. N., Fraenkel D. G. Pathways of NADPH formation in Escherichia coli. J Biol Chem. 1977 May 25;252(10):3382–3391. [PubMed] [Google Scholar]
  5. Friedl P., Hoppe J., Gunsalus R. P., Michelsen O., von Meyenburg K., Schairer H. U. Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. EMBO J. 1983;2(1):99–103. doi: 10.1002/j.1460-2075.1983.tb01388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gay N. J. Construction and characterization of an Escherichia coli strain with a uncI mutation. J Bacteriol. 1984 Jun;158(3):820–825. doi: 10.1128/jb.158.3.820-825.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hansen F. G., Nielsen J., Riise E., von Meyenburg K. The genes for the eight subunits of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet. 1981;183(3):463–472. doi: 10.1007/BF00268766. [DOI] [PubMed] [Google Scholar]
  8. Humbert R., Brusilow W. S., Gunsalus R. P., Klionsky D. J., Simoni R. D. Escherichia coli mutants defective in the uncH gene. J Bacteriol. 1983 Jan;153(1):416–422. doi: 10.1128/jb.153.1.416-422.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nielsen J., Hansen F. G., Hoppe J., Friedl P., von Meyenburg K. The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit delta of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet. 1981;184(1):33–39. doi: 10.1007/BF00271191. [DOI] [PubMed] [Google Scholar]
  10. Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi: 10.1152/physrev.1988.68.1.177. [DOI] [PubMed] [Google Scholar]
  11. Senior A. E. The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem. 1990;19:7–41. doi: 10.1146/annurev.bb.19.060190.000255. [DOI] [PubMed] [Google Scholar]
  12. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  13. Tsuchiya T., Rosen B. P. Respiratory control in Escherichia coli. FEBS Lett. 1980 Oct 20;120(1):128–130. doi: 10.1016/0014-5793(80)81062-3. [DOI] [PubMed] [Google Scholar]
  14. von Meyenburg K., Hansen F. G., Nielsin L. D., Riise E. Origin of replication, oriC, or the Escherichia coli chromosome on specialized transducing phages lambda asn. Mol Gen Genet. 1978 Apr 17;160(3):287–295. doi: 10.1007/BF00332972. [DOI] [PubMed] [Google Scholar]
  15. von Meyenburg K., Jørgensen B. B., Michelsen O., Sørensen L., McCarthy J. E. Proton conduction by subunit a of the membrane-bound ATP synthase of Escherichia coli revealed after induced overproduction. EMBO J. 1985 Sep;4(9):2357–2363. doi: 10.1002/j.1460-2075.1985.tb03939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. von Meyenburg K., Jørgensen B. B., Nielsen J., Hansen F. G. Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. Mol Gen Genet. 1982;188(2):240–248. doi: 10.1007/BF00332682. [DOI] [PubMed] [Google Scholar]
  17. von Meyenburg K., Jørgensen B. B., van Deurs B. Physiological and morphological effects of overproduction of membrane-bound ATP synthase in Escherichia coli K-12. EMBO J. 1984 Aug;3(8):1791–1797. doi: 10.1002/j.1460-2075.1984.tb02047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES