Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Sep;74(6):910–916. doi: 10.1038/bjc.1996.456

Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells.

M E Harper 1, E Glynne-Jones 1, L Goddard 1, V J Thurston 1, K Griffiths 1
PMCID: PMC2074752  PMID: 8826857

Abstract

Vascular endothelial growth factor (VEGF) expression was examined by immunohistochemistry in 45 prostatic carcinoma specimens and ten benign prostatic tumours (BPH). The majority of carcinoma specimens exhibited cytoplasmic staining for VEGF and showed a trend of increasing expression with dedifferentiation (2p = 0.003). Immunoreactive VEGF was also seen in the prostatic carcinoma cell lines, the order of staining intensity was PC3 > DU145 > LNCaP. Intense granular cytoplasmic staining for VEGF was observed in neuroendocrine-like cells which were seen focally in many of the prostatic specimens. Consecutive sections were incubated with a chromogranin A antibody to confirm the neuroendocrine phenotype of these cells. A significant correlation (P < 0.0001) between the total number of intensely stained VEGF-positive cells and chromogranin A-positive cells was found. A subpopulation of neuroendocrine-like cells also showed intense immunoreactivity for transforming growth factor alpha (TGF-alpha). A correlation was observed (2p = 0.0092) between the intensity of VEGF and TGF-alpha immunostaining in carcinoma cells which were not of neuroendocrine differentiation. The presence of these two angiogenic factors may aid the neovascularisation of carcinomas and their increased expression in tumour-associated neuroendocrine cells may contribute to a more aggressive phenotype.

Full text

PDF
910

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul M., Anezinis P. E., Logothetis C. J., Hoosein N. M. Growth inhibition of human prostatic carcinoma cell lines by serotonin antagonists. Anticancer Res. 1994 May-Jun;14(3A):1215–1220. [PubMed] [Google Scholar]
  2. Abrahamsson P. A., Wadström L. B., Alumets J., Falkmer S., Grimelius L. Peptide-hormone- and serotonin-immunoreactive tumour cells in carcinoma of the prostate. Pathol Res Pract. 1987 Jun;182(3):298–307. doi: 10.1016/S0344-0338(87)80065-1. [DOI] [PubMed] [Google Scholar]
  3. Adlakha H., Bostwick D. G. Paneth cell-like change in prostatic adenocarcinoma represents neuroendocrine differentiation: report of 30 cases. Hum Pathol. 1994 Feb;25(2):135–139. doi: 10.1016/0046-8177(94)90268-2. [DOI] [PubMed] [Google Scholar]
  4. Anandappa S. Y., Winstanley J. H., Leinster S., Green B., Rudland P. S., Barraclough R. Comparative expression of fibroblast growth factor mRNAs in benign and malignant breast disease. Br J Cancer. 1994 Apr;69(4):772–776. doi: 10.1038/bjc.1994.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aprikian A. G., Cordon-Cardo C., Fair W. R., Reuter V. E. Characterization of neuroendocrine differentiation in human benign prostate and prostatic adenocarcinoma. Cancer. 1993 Jun 15;71(12):3952–3965. doi: 10.1002/1097-0142(19930615)71:12<3952::aid-cncr2820711226>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  6. Bang Y. J., Pirnia F., Fang W. G., Kang W. K., Sartor O., Whitesell L., Ha M. J., Tsokos M., Sheahan M. D., Nguyen P. Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5330–5334. doi: 10.1073/pnas.91.12.5330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beauchamp R. D., Coffey R. J., Jr, Lyons R. M., Perkett E. A., Townsend C. M., Jr, Moses H. L. Human carcinoid cell production of paracrine growth factors that can stimulate fibroblast and endothelial cell growth. Cancer Res. 1991 Oct 1;51(19):5253–5260. [PubMed] [Google Scholar]
  8. Bebök Z., Márkus B., Németh P. Prognostic relevance of transforming growth factor alpha (TGF-alpha) and tumor necrosis factor alpha (TNF-alpha) detected in breast cancer tissues by immunohistochemistry. Breast Cancer Res Treat. 1994;29(3):229–235. doi: 10.1007/BF00666476. [DOI] [PubMed] [Google Scholar]
  9. Benharroch D., Birnbaum D. Biology of the fibroblast growth factor gene family. Isr J Med Sci. 1990 Apr;26(4):212–219. [PubMed] [Google Scholar]
  10. Bonkhoff H., Wernert N., Dhom G., Remberger K. Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate. 1991;19(2):91–98. doi: 10.1002/pros.2990190202. [DOI] [PubMed] [Google Scholar]
  11. Bosari S., Lee A. K., DeLellis R. A., Wiley B. D., Heatley G. J., Silverman M. L. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol. 1992 Jul;23(7):755–761. doi: 10.1016/0046-8177(92)90344-3. [DOI] [PubMed] [Google Scholar]
  12. Brown L. F., Berse B., Jackman R. W., Tognazzi K., Guidi A. J., Dvorak H. F., Senger D. R., Connolly J. L., Schnitt S. J. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol. 1995 Jan;26(1):86–91. doi: 10.1016/0046-8177(95)90119-1. [DOI] [PubMed] [Google Scholar]
  13. Chaudhry A., Funa K., Oberg K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol. 1993;32(2):107–114. doi: 10.3109/02841869309083898. [DOI] [PubMed] [Google Scholar]
  14. Chaudhry A., Papanicolaou V., Oberg K., Heldin C. H., Funa K. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res. 1992 Feb 15;52(4):1006–1012. [PubMed] [Google Scholar]
  15. Ching K. Z., Ramsey E., Pettigrew N., D'Cunha R., Jason M., Dodd J. G. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol Cell Biochem. 1993 Sep 22;126(2):151–158. doi: 10.1007/BF00925693. [DOI] [PubMed] [Google Scholar]
  16. Cohen R. J., Glezerson G., Haffejee Z., Afrika D. Prostatic carcinoma: histological and immunohistological factors affecting prognosis. Br J Urol. 1990 Oct;66(4):405–410. doi: 10.1111/j.1464-410x.1990.tb14963.x. [DOI] [PubMed] [Google Scholar]
  17. Cohen R. J., Glezerson G., Haffejee Z. Neuro-endocrine cells--a new prognostic parameter in prostate cancer. Br J Urol. 1991 Sep;68(3):258–262. doi: 10.1111/j.1464-410x.1991.tb15318.x. [DOI] [PubMed] [Google Scholar]
  18. Cohen R. J., Glezerson G., Haffejee Z. Prostate-specific antigen and prostate-specific acid phosphatase in neuroendocrine cells of prostate cancer. Arch Pathol Lab Med. 1992 Jan;116(1):65–66. [PubMed] [Google Scholar]
  19. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  20. Glynne-Jones E., Harper M. E., Goddard L., Eaton C. L., Matthews P. N., Griffiths K. Transforming growth factor beta 1 expression in benign and malignant prostatic tumors. Prostate. 1994 Oct;25(4):210–218. doi: 10.1002/pros.2990250407. [DOI] [PubMed] [Google Scholar]
  21. Hall M. C., Troncoso P., Pollack A., Zhau H. Y., Zagars G. K., Chung L. W., von Eschenbach A. C. Significance of tumor angiogenesis in clinically localized prostate carcinoma treated with external beam radiotherapy. Urology. 1994 Dec;44(6):869–875. doi: 10.1016/s0090-4295(94)80173-8. [DOI] [PubMed] [Google Scholar]
  22. Harper M. E., Goddard L., Glynne-Jones E., Peeling W. B., Griffiths K. Epidermal growth factor receptor expression by northern analysis and immunohistochemistry in benign and malignant prostatic tumours. Eur J Cancer. 1995;31A(9):1492–1497. doi: 10.1016/0959-8049(95)00207-y. [DOI] [PubMed] [Google Scholar]
  23. Harper M. E., Goddard L., Glynne-Jones E., Wilson D. W., Price-Thomas M., Peeling W. B., Griffiths K. An immunocytochemical analysis of TGF alpha expression in benign and malignant prostatic tumors. Prostate. 1993;23(1):9–23. doi: 10.1002/pros.2990230103. [DOI] [PubMed] [Google Scholar]
  24. Horak E. R., Leek R., Klenk N., LeJeune S., Smith K., Stuart N., Greenall M., Stepniewska K., Harris A. L. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet. 1992 Nov 7;340(8828):1120–1124. doi: 10.1016/0140-6736(92)93150-l. [DOI] [PubMed] [Google Scholar]
  25. Ito T., Kitamura H., Nakamura N., Kameda Y., Kanisawa M. A comparative study of vascular proliferation in brain metastasis of lung carcinomas. Virchows Arch A Pathol Anat Histopathol. 1993;423(1):13–17. doi: 10.1007/BF01606426. [DOI] [PubMed] [Google Scholar]
  26. Kim K. J., Li B., Winer J., Armanini M., Gillett N., Phillips H. S., Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993 Apr 29;362(6423):841–844. doi: 10.1038/362841a0. [DOI] [PubMed] [Google Scholar]
  27. Kondo S., Asano M., Suzuki H. Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1234–1241. doi: 10.1006/bbrc.1993.1955. [DOI] [PubMed] [Google Scholar]
  28. Krijnen J. L., Janssen P. J., Ruizeveld de Winter J. A., van Krimpen H., Schröder F. H., van der Kwast T. H. Do neuroendocrine cells in human prostate cancer express androgen receptor? Histochemistry. 1993 Nov;100(5):393–398. doi: 10.1007/BF00268938. [DOI] [PubMed] [Google Scholar]
  29. Liu X. H., Wiley H. S., Meikle A. W. Androgens regulate proliferation of human prostate cancer cells in culture by increasing transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF)/TGF-alpha receptor. J Clin Endocrinol Metab. 1993 Dec;77(6):1472–1478. doi: 10.1210/jcem.77.6.8263129. [DOI] [PubMed] [Google Scholar]
  30. Macchiarini P., Fontanini G., Hardin M. J., Squartini F., Angeletti C. A. Relation of neovascularisation to metastasis of non-small-cell lung cancer. Lancet. 1992 Jul 18;340(8812):145–146. doi: 10.1016/0140-6736(92)93217-b. [DOI] [PubMed] [Google Scholar]
  31. Mattern J., Koomägi R., Volm M. Association of vascular endothelial growth factor expression with intratumoral microvessel density and tumour cell proliferation in human epidermoid lung carcinoma. Br J Cancer. 1996 Apr;73(7):931–934. doi: 10.1038/bjc.1996.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Neufeld G., Tessler S., Gitay-Goren H., Cohen T., Levi B. Z. Vascular endothelial growth factor and its receptors. Prog Growth Factor Res. 1994;5(1):89–97. doi: 10.1016/0955-2235(94)90019-1. [DOI] [PubMed] [Google Scholar]
  33. Nilsson O., Wängberg B., Kölby L., Schultz G. S., Ahlman H. Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours. Int J Cancer. 1995 Mar 3;60(5):645–651. doi: 10.1002/ijc.2910600514. [DOI] [PubMed] [Google Scholar]
  34. Nilsson O., Wängberg B., Theodorsson E., Skottner A., Ahlman H. Presence of IGF-I in human midgut carcinoid tumours--an autocrine regulator of carcinoid tumour growth? Int J Cancer. 1992 May 8;51(2):195–203. doi: 10.1002/ijc.2910510206. [DOI] [PubMed] [Google Scholar]
  35. O'Brien T., Cranston D., Fuggle S., Bicknell R., Harris A. L. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res. 1995 Feb 1;55(3):510–513. [PubMed] [Google Scholar]
  36. Ono M., Okamura K., Nakayama Y., Tomita M., Sato Y., Komatsu Y., Kuwano M. Induction of human microvascular endothelial tubular morphogenesis by human keratinocytes: involvement of transforming growth factor-alpha. Biochem Biophys Res Commun. 1992 Dec 15;189(2):601–609. doi: 10.1016/0006-291x(92)92243-q. [DOI] [PubMed] [Google Scholar]
  37. Plate K. H., Breier G., Risau W. Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol. 1994 Jul;4(3):207–218. doi: 10.1111/j.1750-3639.1994.tb00835.x. [DOI] [PubMed] [Google Scholar]
  38. Reinartz J. J., George E., Lindgren B. R., Niehans G. A. Expression of p53, transforming growth factor alpha, epidermal growth factor receptor, and c-erbB-2 in endometrial carcinoma and correlation with survival and known predictors of survival. Hum Pathol. 1994 Oct;25(10):1075–1083. doi: 10.1016/0046-8177(94)90068-x. [DOI] [PubMed] [Google Scholar]
  39. Sauter E. R., Coia L. R., Eisenberg B. L., Hanks G. E. Transforming growth factor alpha expression as a potential survival prognosticator in patients with esophageal adenocarcinoma receiving high-dose radiation and chemotherapy. Int J Radiat Oncol Biol Phys. 1995 Feb 1;31(3):567–569. doi: 10.1016/0360-3016(94)00368-U. [DOI] [PubMed] [Google Scholar]
  40. Schmid K. W., Helpap B., Tötsch M., Kirchmair R., Dockhorn-Dworniczak B., Böcker W., Fischer-Colbrie R. Immunohistochemical localization of chromogranins A and B and secretogranin II in normal, hyperplastic and neoplastic prostate. Histopathology. 1994 Mar;24(3):233–239. doi: 10.1111/j.1365-2559.1994.tb00515.x. [DOI] [PubMed] [Google Scholar]
  41. Schreiber A. B., Winkler M. E., Derynck R. Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science. 1986 Jun 6;232(4755):1250–1253. doi: 10.1126/science.2422759. [DOI] [PubMed] [Google Scholar]
  42. Schuurmans A. L., Bolt J., Veldscholte J., Mulder E. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones. J Steroid Biochem Mol Biol. 1991;40(1-3):193–197. doi: 10.1016/0960-0760(91)90182-5. [DOI] [PubMed] [Google Scholar]
  43. Takahashi A., Sasaki H., Kim S. J., Tobisu K., Kakizoe T., Tsukamoto T., Kumamoto Y., Sugimura T., Terada M. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res. 1994 Aug 1;54(15):4233–4237. [PubMed] [Google Scholar]
  44. Toi M., Hoshina S., Takayanagi T., Tominaga T. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast cancer. Jpn J Cancer Res. 1994 Oct;85(10):1045–1049. doi: 10.1111/j.1349-7006.1994.tb02904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Toi M., Kondo S., Suzuki H., Yamamoto Y., Inada K., Imazawa T., Taniguchi T., Tominaga T. Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer. 1996 Mar 15;77(6):1101–1106. doi: 10.1002/(sici)1097-0142(19960315)77:6<1101::aid-cncr15>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  46. Turbat-Herrera E. A., Herrera G. A., Gore I., Lott R. L., Grizzle W. E., Bonnin J. M. Neuroendocrine differentiation in prostatic carcinomas. A retrospective autopsy study. Arch Pathol Lab Med. 1988 Nov;112(11):1100–1105. [PubMed] [Google Scholar]
  47. Vesalainen S., Lipponen P., Talja M., Alhava E., Syrjänen K. Tumor vascularity and basement membrane structure as prognostic factors in T1-2MO prostatic adenocarcinoma. Anticancer Res. 1994 Mar-Apr;14(2B):709–714. [PubMed] [Google Scholar]
  48. Vukanovic J., Hartley-Asp B., Isaacs J. T. Inhibition of tumor angiogenesis and the therapeutic ability of linomide against rat prostatic cancers. Prostate. 1995 May;26(5):235–246. doi: 10.1002/pros.2990260503. [DOI] [PubMed] [Google Scholar]
  49. Wakui S., Furusato M., Itoh T., Sasaki H., Akiyama A., Kinoshita I., Asano K., Tokuda T., Aizawa S., Ushigome S. Tumour angiogenesis in prostatic carcinoma with and without bone marrow metastasis: a morphometric study. J Pathol. 1992 Nov;168(3):257–262. doi: 10.1002/path.1711680303. [DOI] [PubMed] [Google Scholar]
  50. Weidner N., Carroll P. R., Flax J., Blumenfeld W., Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993 Aug;143(2):401–409. [PMC free article] [PubMed] [Google Scholar]
  51. Weidner N., Folkman J., Pozza F., Bevilacqua P., Allred E. N., Moore D. H., Meli S., Gasparini G. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992 Dec 16;84(24):1875–1887. doi: 10.1093/jnci/84.24.1875. [DOI] [PubMed] [Google Scholar]
  52. Weindel K., Moringlane J. R., Marmé D., Weich H. A. Detection and quantification of vascular endothelial growth factor/vascular permeability factor in brain tumor tissue and cyst fluid: the key to angiogenesis? Neurosurgery. 1994 Sep;35(3):439–449. doi: 10.1227/00006123-199409000-00012. [DOI] [PubMed] [Google Scholar]
  53. Yamamoto T., Terada N., Nishizawa Y., Petrow V. Angiostatic activities of medroxyprogesterone acetate and its analogues. Int J Cancer. 1994 Feb 1;56(3):393–399. doi: 10.1002/ijc.2910560318. [DOI] [PubMed] [Google Scholar]
  54. Yamazaki K., Abe S., Takekawa H., Sukoh N., Watanabe N., Ogura S., Nakajima I., Isobe H., Inoue K., Kawakami Y. Tumor angiogenesis in human lung adenocarcinoma. Cancer. 1994 Oct 15;74(8):2245–2250. doi: 10.1002/1097-0142(19941015)74:8<2245::aid-cncr2820740807>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  55. Zagzag D. Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol. 1995 Feb;146(2):293–309. [PMC free article] [PubMed] [Google Scholar]
  56. di Sant'Agnese P. A. Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol. 1992 Mar;23(3):287–296. doi: 10.1016/0046-8177(92)90110-o. [DOI] [PubMed] [Google Scholar]
  57. di Sant'Agnese P. A., de Mesy Jensen K. L. Neuroendocrine differentiation in prostatic carcinoma. Hum Pathol. 1987 Aug;18(8):849–856. doi: 10.1016/s0046-8177(87)80060-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES