Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Nov;74(10):1627–1631. doi: 10.1038/bjc.1996.599

Loss of interleukin 4 receptor-associated molecule gp200-MR6 in human breast cancer: prognostic significance.

L Kaklamanis 1, M I Koukourakis 1, R Leek 1, A Giatromanolaki 1, M Ritter 1, R Whitehouse 1, K C Gatter 1, A L Harris 1
PMCID: PMC2074844  PMID: 8932345

Abstract

Several in vitro studies stress a potentially important role of interleukin 4 (IL-4) and the related gp200-MR6 molecule in the immunological response to cancer and in tumour proliferation. In the present study, we assessed the expression of gp200-MR6 in primary breast cacrinomas using the MR6 monoclonal antibody. Results were correlated with tumour parameters (T-,N-stage, histology, grade, oestrogen and epidermal growth factor (EGF) receptors), and the impact on survival was assessed. Twenty-four out of 110 cases (22%) were positive for gp200-MR6, 62 out of 110 (56%) expressed weak staining and 24 out of 114 (22%) did not stain. The normal breast epithelia were invariably stained for gp200-MR6 showing that down-regulation or loss of this molecule occurred during the evolution of breast cancer. Gp200-MR6 loss was independent from differentiation, nodal positivity and oestrogen receptor levels as well as patients' age. Loss of the gp200-MR6 molecule was more frequent in lobular cases (P=0.03). The overall survival was better, although not reaching statistical significance, in patients with positive gp200-MR6 expression (92% alive at 5 years compared with 70% for those with weak or no expression, P=0.1). The local relapse-free survival was independent of gp200-MR6 status. It is concluded that loss of gp200-MR6 may be one of the mechanisms through which breast cancer cells escape immune surveillance, resulting in an increased metastatic potential and poorer outcome. Evidence of down-regulation of the gp200-MR6 molecule has implications for IL-4-linked toxin therapy and, as IL-4 is an inhibitor of breast epithelial growth, may represent loss of a tumour-suppression mechanism.

Full text

PDF
1627

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al Jabaari B., Ladyman H. M., Larché M., Sivolapenko G. B., Epenetos A. A., Ritter M. A. Elevated expression of the interleukin 4 receptor in carcinoma: a target for immunotherapy? Br J Cancer. 1989 Jun;59(6):910–914. doi: 10.1038/bjc.1989.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bamborough P., Grant G. H., Hedgecock C. J., West S. P., Richards W. G. A computer model of the interleukin-4/receptor complex. Proteins. 1993 Sep;17(1):11–19. doi: 10.1002/prot.340170105. [DOI] [PubMed] [Google Scholar]
  3. Cordell J. L., Falini B., Erber W. N., Ghosh A. K., Abdulaziz Z., MacDonald S., Pulford K. A., Stein H., Mason D. Y. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem. 1984 Feb;32(2):219–229. doi: 10.1177/32.2.6198355. [DOI] [PubMed] [Google Scholar]
  4. Debinski W., Puri R. K., Kreitman R. J., Pastan I. A wide range of human cancers express interleukin 4 (IL4) receptors that can be targeted with chimeric toxin composed of IL4 and Pseudomonas exotoxin. J Biol Chem. 1993 Jul 5;268(19):14065–14070. [PubMed] [Google Scholar]
  5. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  6. Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991 Nov 1;254(5032):713–716. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
  7. Hoon D. S., Okun E., Banez M., Irie R. F., Morton D. L. Interleukin 4 alone and with gamma-interferon or alpha-tumor necrosis factor inhibits cell growth and modulates cell surface antigens on human renal cell carcinomas. Cancer Res. 1991 Oct 15;51(20):5687–5693. [PubMed] [Google Scholar]
  8. Howard M., Farrar J., Hilfiker M., Johnson B., Takatsu K., Hamaoka T., Paul W. E. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med. 1982 Mar 1;155(3):914–923. doi: 10.1084/jem.155.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Imami N., Larché M., Ritter M. A. Inhibition of alloreactivity by mAb MR6: differential effects on IL-2- and IL-4- producing human T cells. Int Immunol. 1994 Oct;6(10):1575–1584. doi: 10.1093/intimm/6.10.1575. [DOI] [PubMed] [Google Scholar]
  10. Izuhara K., Yang G., Miyajima A., Howard M., Harada N. Structure of the IL4 receptor and signal transduction mechanism of IL4. Res Immunol. 1993 Oct;144(8):584–590. doi: 10.1016/s0923-2494(05)80007-0. [DOI] [PubMed] [Google Scholar]
  11. Kaklamanis L., Gatter K. C., Mortensen N., Harris A. L. Interleukin-4 receptor and epidermal growth factor receptor expression in colorectal cancer. Br J Cancer. 1992 Oct;66(4):712–716. doi: 10.1038/bjc.1992.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaklamanis L., Leek R., Koukourakis M., Gatter K. C., Harris A. L. Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Res. 1995 Nov 15;55(22):5191–5194. [PubMed] [Google Scholar]
  13. Larche M., Lamb J. R., O'Hehir R. E., Imami-Shita N., Zanders E. D., Quint D. E., Moqbel R., Ritter M. A. Functional evidence for a monoclonal antibody that binds to the human IL-4 receptor. Immunology. 1988 Dec;65(4):617–622. [PMC free article] [PubMed] [Google Scholar]
  14. Lorenzen J., Lewis C. E., McCracken D., Horak E., Greenall M., McGee J. O. Human tumour-associated NK cells secrete increased amounts of interferon-gamma and interleukin-4. Br J Cancer. 1991 Sep;64(3):457–462. doi: 10.1038/bjc.1991.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mat I., Larche M., Melcher D., Ritter M. A. Tumour-associated upregulation of the IL-4 receptor complex. Br J Cancer Suppl. 1990 Jul;10:96–98. [PMC free article] [PubMed] [Google Scholar]
  16. Monroe J. G., Haldar S., Prystowsky M. B., Lammie P. Lymphokine regulation of inflammatory processes: interleukin-4 stimulates fibroblast proliferation. Clin Immunol Immunopathol. 1988 Nov;49(2):292–298. doi: 10.1016/0090-1229(88)90119-5. [DOI] [PubMed] [Google Scholar]
  17. Murata T., Noguchi P. D., Puri R. K. Receptors for interleukin (IL)-4 do not associate with the common gamma chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J Biol Chem. 1995 Dec 22;270(51):30829–30836. doi: 10.1074/jbc.270.51.30829. [DOI] [PubMed] [Google Scholar]
  18. Nicholson S., Sainsbury J. R., Needham G. K., Chambers P., Farndon J. R., Harris A. L. Quantitative assays of epidermal growth factor receptor in human breast cancer: cut-off points of clinical relevance. Int J Cancer. 1988 Jul 15;42(1):36–41. doi: 10.1002/ijc.2910420108. [DOI] [PubMed] [Google Scholar]
  19. Obiri N. I., Siegel J. P., Varricchio F., Puri R. K. Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol. 1994 Jan;95(1):148–155. doi: 10.1111/j.1365-2249.1994.tb06029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ohara J., Paul W. E. Receptors for B-cell stimulatory factor-1 expressed on cells of haematopoietic lineage. Nature. 1987 Feb 5;325(6104):537–540. doi: 10.1038/325537a0. [DOI] [PubMed] [Google Scholar]
  21. Ohira T., Ohe Y., Saijo N. [Induction of tumor immunity by cytokine cDNA transfected Lewis lung carcinoma]. Nihon Kyobu Shikkan Gakkai Zasshi. 1992 Dec;30 (Suppl):48–51. [PubMed] [Google Scholar]
  22. Puri R. K., Ogata M., Leland P., Feldman G. M., FitzGerald D., Pastan I. Expression of high-affinity interleukin 4 receptors on murine sarcoma cells and receptor-mediated cytotoxicity of tumor cells to chimeric protein between interleukin 4 and Pseudomonas exotoxin. Cancer Res. 1991 Jun 1;51(11):3011–3017. [PubMed] [Google Scholar]
  23. Tepper R. I., Pattengale P. K., Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989 May 5;57(3):503–512. doi: 10.1016/0092-8674(89)90925-2. [DOI] [PubMed] [Google Scholar]
  24. Thornhill M. H., Haskard D. O. IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. J Immunol. 1990 Aug 1;145(3):865–872. [PubMed] [Google Scholar]
  25. Toi M., Bicknell R., Harris A. L. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res. 1992 Jan 15;52(2):275–279. [PubMed] [Google Scholar]
  26. Toi M., Harris A. L., Bicknell R. Interleukin-4 is a potent mitogen for capillary endothelium. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1287–1293. doi: 10.1016/0006-291x(91)91561-p. [DOI] [PubMed] [Google Scholar]
  27. Totpal K., Aggarwal B. B. Interleukin 4 potentiates the antiproliferative effects of tumor necrosis factor on various tumor cell lines. Cancer Res. 1991 Aug 15;51(16):4266–4270. [PubMed] [Google Scholar]
  28. Tungekar M. F., Gatter K. C., Ritter M. A. Bladder carcinomas and normal urothelium universally express gp200-MR6, a molecule functionally associated with the interleukin 4 receptor (CD 124). Br J Cancer. 1996 Feb;73(4):429–432. doi: 10.1038/bjc.1996.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tungekar M. F., Turley H., Dunnill M. S., Gatter K. C., Ritter M. A., Harris A. L. Interleukin 4 receptor expression on human lung tumors and normal lung. Cancer Res. 1991 Jan 1;51(1):261–264. [PubMed] [Google Scholar]
  30. Zaloom Y., Gallagher G. IL-2 inhibits the induction of systemic antitumour immunity by IL-4 in the peritumoural treatment of experimental melanoma. Anticancer Res. 1993 Jul-Aug;13(4):1081–1085. [PubMed] [Google Scholar]
  31. de Maagd R. A., MacKenzie W. A., Schuurman H. J., Ritter M. A., Price K. M., Broekhuizen R., Kater L. The human thymus microenvironment: heterogeneity detected by monoclonal anti-epithelial cell antibodies. Immunology. 1985 Apr;54(4):745–754. [PMC free article] [PubMed] [Google Scholar]
  32. von Gaudecker B., Larché M., Schuurman H. J., Ritter M. A. Analysis of the fine distribution of thymic epithelial microenvironmental molecules by immuno-electron microscopy. Thymus. 1989;13(3-4):187–194. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES