Abstract
Malignant progression of tumour cells is caused by the accumulation of genetic defects, which when combined will generate a large phenotypic diversity. Simultaneous quantitation of a large number of gene products in tumour cells is desirable, but difficult to achieve. We have here quantitated the levels of a number of abundant polypeptides in human breast carcinoma cells using two-dimensional gel electrophoresis (2-DE; PDQUEST). For this purpose, tumour cells were prepared from the tissue of 17 breast carcinomas. Fibroadenoma tissue was used as reference for benign cells. An increase of the spot density of the PCNA polypeptide was observed in rapidly proliferating tumour cells, confirming the validity of the procedures used. In the set of 24 polypeptide spots with known identity, decreases in cytokeratin and tropomyosin levels were observed. The levels of all cytokeratin forms resolved (CK7, CK8, CK15 and CK18) were significantly lower in carcinomas than in fibroadenomas. The levels of tropomyosin 2 and 3 were lower in carcinomas than in fibroadenomas. In contrast, the levels of some members of the stress protein family (pHSP60, HSP90 and calreticulin) were higher in carcinomas. Furthermore, changes in the expression of lactate dehydrogenase and GT-pi, but not in nm23, were observed. We conclude that simultaneous analysis of multiple polypeptides in human carcinomas can be achieved by 2-DE and may be useful in prognostic studies, and that malignant progression of breast carcinomas results in the decreased expression of cytokeratin polypeptides. This phenomenon must be considered in studies where cytokeratins are used as markers to identify the epithelial cell compartment in breast carcinomas.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auer G. U., Caspersson T. O., Wallgren A. S. DNA content and survival in mammary carcinoma. Anal Quant Cytol. 1980 Sep;2(3):161–165. [PubMed] [Google Scholar]
- Celis J. E., Rasmussen H. H., Gromov P., Olsen E., Madsen P., Leffers H., Honoré B., Dejgaard K., Vorum H., Kristensen D. B. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways. Electrophoresis. 1995 Dec;16(12):2177–2240. doi: 10.1002/elps.11501601355. [DOI] [PubMed] [Google Scholar]
- Daniel V. Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol. 1993;28(3):173–207. doi: 10.3109/10409239309086794. [DOI] [PubMed] [Google Scholar]
- Franzén B., Linder S., Uryu K., Alaiya A. A., Hirano T., Kato H., Auer G. Expression of tropomyosin isoforms in benign and malignant human breast lesions. Br J Cancer. 1996 Apr;73(7):909–913. doi: 10.1038/bjc.1996.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrels J. I., Franza B. R., Jr Transformation-sensitive and growth-related changes of protein synthesis in REF52 cells. A two-dimensional gel analysis of SV40-, adenovirus-, and Kirsten murine sarcoma virus-transformed rat cells using the REF52 protein database. J Biol Chem. 1989 Mar 25;264(9):5299–5312. [PubMed] [Google Scholar]
- Garrels J. I. Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem. 1979 Aug 25;254(16):7961–7977. [PubMed] [Google Scholar]
- Harbeck N., Untch M., Pache L., Eiermann W. Tumour cell detection in the bone marrow of breast cancer patients at primary therapy: results of a 3-year median follow-up. Br J Cancer. 1994 Mar;69(3):566–571. doi: 10.1038/bjc.1994.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heatley M., Maxwell P., Whiteside C., Toner P. Cytokeratin intermediate filament expression in benign and malignant breast disease. J Clin Pathol. 1995 Jan;48(1):26–32. doi: 10.1136/jcp.48.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jooss K. U., Müller R. Deregulation of genes encoding microfilament-associated proteins during Fos-induced morphological transformation. Oncogene. 1995 Feb 2;10(3):603–608. [PubMed] [Google Scholar]
- Lebeau J., Le Chalony C., Prosperi M. T., Goubin G. Constitutive overexpression of a 89 kDa heat shock protein gene in the HBL100 human mammary cell line converted to a tumorigenic phenotype by the EJ/T24 Harvey-ras oncogene. Oncogene. 1991 Jul;6(7):1125–1132. [PubMed] [Google Scholar]
- Linder S., Brzeski H., Ringertz N. R. Phenotypic expression in cybrids derived from teratocarcinoma cells fused with myoblast cytoplasms. Exp Cell Res. 1979 Apr;120(1):1–14. doi: 10.1016/0014-4827(79)90529-9. [DOI] [PubMed] [Google Scholar]
- Matsumura F., Yamashiro-Matsumura S. Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells. J Biol Chem. 1985 Nov 5;260(25):13851–13859. [PubMed] [Google Scholar]
- Moll R. Molecular diversity of cytokeratins: significance for cell and tumor differentiation. Acta Histochem Suppl. 1991;41:117–127. [PubMed] [Google Scholar]
- Okuzawa K., Franzén B., Lindholm J., Linder S., Hirano T., Bergman T., Ebihara Y., Kato H., Auer G. Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1994 Mar-Apr;15(3-4):382–390. doi: 10.1002/elps.1150150157. [DOI] [PubMed] [Google Scholar]
- Paine T. M., Fontanini G., Basolo F., Geronimo I., Elliott J. W., Russo J. Mutated c-Ha-ras oncogene alters cytokeratin expression in the human breast epithelial cell line MCF-10A. Am J Pathol. 1992 Jun;140(6):1483–1488. [PMC free article] [PubMed] [Google Scholar]
- Pantel K., Schlimok G., Braun S., Kutter D., Lindemann F., Schaller G., Funke I., Izbicki J. R., Riethmüller G. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst. 1993 Sep 1;85(17):1419–1424. doi: 10.1093/jnci/85.17.1419. [DOI] [PubMed] [Google Scholar]
- Paulin D., Forest N., Perreau J. Cytoskeletal proteins used as marker of differentiation in mouse terato;carcinoma cells. J Mol Biol. 1980 Nov 25;144(1):95–101. doi: 10.1016/0022-2836(80)90216-8. [DOI] [PubMed] [Google Scholar]
- Ramaekers F. C., Beck H., Vooijs G. P., Herman C. J. Flow-cytometric analysis of mixed cell populations using intermediate filament antibodies. Exp Cell Res. 1984 Jul;153(1):249–253. doi: 10.1016/0014-4827(84)90467-1. [DOI] [PubMed] [Google Scholar]
- Steeg P. S., de la Rosa A., Flatow U., MacDonald N. J., Benedict M., Leone A. Nm23 and breast cancer metastasis. Breast Cancer Res Treat. 1993;25(2):175–187. doi: 10.1007/BF00662142. [DOI] [PubMed] [Google Scholar]
- Takei H., Iino Y., Horiguchi J., Kanoh T., Takao Y., Oyama T., Morishita Y. Immunohistochemical analysis of cytokeratin #8 as a prognostic factor in invasive breast carcinoma. Anticancer Res. 1995 May-Jun;15(3):1101–1105. [PubMed] [Google Scholar]
- Trask D. K., Band V., Zajchowski D. A., Yaswen P., Suh T., Sager R. Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2319–2323. doi: 10.1073/pnas.87.6.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wada T., Yasutomi M., Yamada K., Hashimura K., Kunikata M., Tanaka T., Huang J. W., Mori M. Heterogeneity of keratin expression and actin distribution in benign and malignant mammary diseases. Anticancer Res. 1991 Nov-Dec;11(6):1983–1993. [PubMed] [Google Scholar]
- Wingren S., Stål O., Nordenskjöld B. Flow cytometric analysis of S-phase fraction in breast carcinomas using gating on cells containing cytokeratin. South East Sweden Breast Cancer Group. Br J Cancer. 1994 Mar;69(3):546–549. doi: 10.1038/bjc.1994.99. [DOI] [PMC free article] [PubMed] [Google Scholar]



