Abstract
A complete pathway for Azorhizobium caulinodans nicotinate catabolism has been determined from mutant phenotype analyses, isolation of metabolic intermediates, and structural studies. Nicotinate serves as a respiratory electron donor to O2 via a membrane-bound hydroxylase and a specific c-type cytochrome oxidase. The resulting oxidized product, 6-hydroxynicotinate, is next reduced to 1,4,5,6-tetrahydro-6-oxonicotinate. Hydrolytic ring breakage follows, with release of pyridine N as ammonium. Decarboxylation then releases the nicotinate C-7 carboxyl group as CO2, and the remaining C skeleton is then oxidized to yield glutarate. Transthioesterification with succinyl coenzyme A (succinyl-CoA) yields glutaryl-CoA, which is then oxidatively decarboxylated to yield crotonyl-CoA. As with general acyl beta oxidation, L-beta-hydroxybutyryl-CoA, acetoacetyl-CoA, and finally two molecules of acetyl-CoA are produced. In sum, nicotinate is catabolized to yield two CO2 molecules, two acetyl-CoA molecules, and ammonium. Nicotinate catabolism stimulates Azorhizobium N2 fixation rates in culture. Nicotinate catabolism mutants still able to liberate pyridine N as ammonium retain this capability, whereas mutants so blocked do not. From, mutant analyses and additional physiological tests, N2 fixation stimulation is indirect. In N-limited culture, nicotinate catabolism augments anabolic N pools and, as a consequence, yields N2-fixing cells with higher dinitrogenase content.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEHRMAN E. J., STANIER R. Y. The bacterial oxidation of nicotinic acid. J Biol Chem. 1957 Oct;228(2):923–945. [PubMed] [Google Scholar]
- Buckmiller L. M., Lapointe J. P., Ludwig R. A. Cloning of Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance in N2 fixation. J Bacteriol. 1991 Mar;173(6):2017–2025. doi: 10.1128/jb.173.6.2017-2025.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donald R. G., Lapointe J., Ludwig R. A. Characterization of the Azorhizobium sesbaniae ORS571 genomic locus encoding NADPH-glutamate synthase. J Bacteriol. 1988 Mar;170(3):1197–1204. doi: 10.1128/jb.170.3.1197-1204.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donald R. G., Ludwig R. A. Rhizobium sp. strain ORS571 ammonium assimilation and nitrogen fixation. J Bacteriol. 1984 Jun;158(3):1144–1151. doi: 10.1128/jb.158.3.1144-1151.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donald R. G., Nees D. W., Raymond C. K., Loroch A. I., Ludwig R. A. Characterization of three genomic loci encoding Rhizobium sp. strain ORS571 N2 fixation genes. J Bacteriol. 1986 Jan;165(1):72–81. doi: 10.1128/jb.165.1.72-81.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donald R. G., Raymond C. K., Ludwig R. A. Vector insertion mutagenesis of Rhizobium sp. strain ORS571: direct cloning of mutagenized DNA sequences. J Bacteriol. 1985 Apr;162(1):317–323. doi: 10.1128/jb.162.1.317-323.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyfus B. L., Elmerich C., Dommergues Y. R. Free-living Rhizobium strain able to grow on n(2) as the sole nitrogen source. Appl Environ Microbiol. 1983 Feb;45(2):711–713. doi: 10.1128/aem.45.2.711-713.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNT A. L. Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens KB1. Biochem J. 1959 May;72(1):1–7. doi: 10.1042/bj0720001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirschberg R., Ensign J. C. Oxidation of nicotinic acid by a Bacillus species: purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases. J Bacteriol. 1971 Nov;108(2):751–756. doi: 10.1128/jb.108.2.751-756.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holcenberg J. S., Tsai L. Nicotinic acid metabolism. IV. Ferredoxin-dependent reduction of 6-hydroxynicotinic acid to 6-oxo-1,4,5,6-tetrahydronicotinic acid. J Biol Chem. 1969 Mar 10;244(5):1204–1211. [PubMed] [Google Scholar]
- Jones M. V., Hughes D. E. The oxidation of nicotinic acid by Pseudomonas ovalis Chester. The terminal oxidase. Biochem J. 1972 Sep;129(3):755–761. doi: 10.1042/bj1290755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitts C. L., Schaechter L. E., Rabin R. S., Ludwig R. A. Identification of cyclic intermediates in Azorhizobium caulinodans nicotinate catabolism. J Bacteriol. 1989 Jun;171(6):3406–3411. doi: 10.1128/jb.171.6.3406-3411.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig R. A. Rhizobium sp. strain ORS571 grows synergistically on N2 and nicotinate as N sources. J Bacteriol. 1986 Jan;165(1):304–307. doi: 10.1128/jb.165.1.304-307.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magasanik B. Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet. 1982;16:135–168. doi: 10.1146/annurev.ge.16.120182.001031. [DOI] [PubMed] [Google Scholar]
- NISHIZUKA Y., KUNO S., HAYAISHI O. Enzymic formation of acetyl-CoA and carbon dioxide from glutaryl-CoA. Biochim Biophys Acta. 1960 Sep 23;43:357–360. doi: 10.1016/0006-3002(60)90456-x. [DOI] [PubMed] [Google Scholar]
- NUMA S., ISHIMURA Y., NAKAZAWA T., OKAZAKI T., HAYAISHI O. ENZYMIC STUDIES ON THE METABOLISM OF GLUTARATE IN PSEUDOMONAS. J Biol Chem. 1964 Nov;239:3915–3926. [PubMed] [Google Scholar]
- Steinbüchel A., Schlegel H. G. Physiology and molecular genetics of poly(beta-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol. 1991 Mar;5(3):535–542. doi: 10.1111/j.1365-2958.1991.tb00725.x. [DOI] [PubMed] [Google Scholar]
- Tsai L., Pastan I., Stadtman E. R. Nicotinic acid metabolism. II. The isolation and characterization of intermediates in the fermentation of nicotinic acid. J Biol Chem. 1966 Apr 25;241(8):1807–1813. [PubMed] [Google Scholar]
