Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Apr;73(8):875–883. doi: 10.1038/bjc.1996.176

Characterisation of antimitotic products from marine organisms that disorganise the microtubule network: ecteinascidin 743, isohomohalichondrin-B and LL-15.

M García-Rocha 1, M D García-Gravalos 1, J Avila 1
PMCID: PMC2075815  PMID: 8611420

Abstract

The effect of selected marine compounds with anti-tumoral activity on the cell microtubule network was tested by immunofluorescence analyses, or by other in vitro analyses involving competition with colchicine or with GTP for tubulin binding and tubulin polymerisation, studies that were carried out in parallel with other microtubule poisons used as controls. Three compounds were found to disorganise the microtubule network: isohomohalichondrin B, LL-15 and ecsteinascidin 743. The first two compounds prevent microtubule assembly and GTP binding to tubulin. Ecteinascidin 743 disorganises the microtubule network but it does not seem to interact directly with tubulin.

Full text

PDF
875

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P. W., Pienkowski T. P., Cimbalnik K. A., Toyama K., Bakalis S., Ahmad F. J., Kosik K. S. Tau confers drug stability but not cold stability to microtubules in living cells. J Cell Sci. 1994 Jan;107(Pt 1):135–143. doi: 10.1242/jcs.107.1.135. [DOI] [PubMed] [Google Scholar]
  2. Bai R. L., Paull K. D., Herald C. L., Malspeis L., Pettit G. R., Hamel E. Halichondrin B and homohalichondrin B, marine natural products binding in the vinca domain of tubulin. Discovery of tubulin-based mechanism of action by analysis of differential cytotoxicity data. J Biol Chem. 1991 Aug 25;266(24):15882–15889. [PubMed] [Google Scholar]
  3. Bai R. L., Pettit G. R., Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem. 1990 Oct 5;265(28):17141–17149. [PubMed] [Google Scholar]
  4. Beck W. T. The cell biology of multiple drug resistance. Biochem Pharmacol. 1987 Sep 15;36(18):2879–2887. doi: 10.1016/0006-2952(87)90198-5. [DOI] [PubMed] [Google Scholar]
  5. Díez J. C., Avila J., Nieto J. M., Andreu J. M. Reversible inhibition of microtubules and cell growth by the bicyclic colchicine analogue MTC. Cell Motil Cytoskeleton. 1987;7(2):178–186. doi: 10.1002/cm.970070210. [DOI] [PubMed] [Google Scholar]
  6. Flam F. Chemical prospectors scour the seas for promising drugs. Science. 1994 Nov 25;266(5189):1324–1325. doi: 10.1126/science.7973722. [DOI] [PubMed] [Google Scholar]
  7. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  8. Himes R. H., Burton P. R., Gaito J. M. Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem. 1977 Sep 10;252(17):6222–6228. [PubMed] [Google Scholar]
  9. Hoebeke J., Van Nijen G., De Brabander M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):319–324. doi: 10.1016/0006-291x(76)90524-6. [DOI] [PubMed] [Google Scholar]
  10. Huang A. B., Lin C. M., Hamel E. Maytansine inhibits nucleotide binding at the exchangeable site of tubulin. Biochem Biophys Res Commun. 1985 May 16;128(3):1239–1246. doi: 10.1016/0006-291x(85)91073-3. [DOI] [PubMed] [Google Scholar]
  11. Klymkowsky M. W. Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature. 1981 May 21;291(5812):249–251. doi: 10.1038/291249a0. [DOI] [PubMed] [Google Scholar]
  12. Ludueña R. F., Prasad V., Roach M. C., Lacey E. The interaction of phomopsin A with bovine brain tubulin. Arch Biochem Biophys. 1989 Jul;272(1):32–38. doi: 10.1016/0003-9861(89)90191-4. [DOI] [PubMed] [Google Scholar]
  13. Moscow J. A., Cowan K. H. Multidrug resistance. J Natl Cancer Inst. 1988 Mar 2;80(1):14–20. doi: 10.1093/jnci/80.1.14. [DOI] [PubMed] [Google Scholar]
  14. Osborn M., Weber K. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 1982;24:97–132. doi: 10.1016/s0091-679x(08)60650-0. [DOI] [PubMed] [Google Scholar]
  15. Rowinsky E. K., Donehower R. C. The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther. 1991 Oct;52(1):35–84. doi: 10.1016/0163-7258(91)90086-2. [DOI] [PubMed] [Google Scholar]
  16. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  17. Sullivan A. S., Prasad V., Roach M. C., Takahashi M., Iwasaki S., Ludueña R. F. Interaction of rhizoxin with bovine brain tubulin. Cancer Res. 1990 Jul 15;50(14):4277–4280. [PubMed] [Google Scholar]
  18. TAYLOR E. W. THE MECHANISM OF COLCHICINE INHIBITION OF MITOSIS. I. KINETICS OF INHIBITION AND THE BINDING OF H3-COLCHICINE. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:160. doi: 10.1083/jcb.25.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wheeler G. P., Bowdon B. J., Werline J. A., Adamson D. J., Temple C. G., Jr Inhibition of mitosis and anticancer activity against experimental neoplasms by ethyl 5-amino-1,2-dihydro-3-[(N-methylanilino)methyl]-pyrido[3,4-b]pyrazin-7-ylcarbamate (NSC 181928). Cancer Res. 1982 Mar;42(3):791–798. [PubMed] [Google Scholar]
  21. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES