Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1996 Apr;73(8):937–944. doi: 10.1038/bjc.1996.185

A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model.

A Orenstein 1, G Kostenich 1, L Roitman 1, Y Shechtman 1, Y Kopolovic 1, B Ehrenberg 1, Z Malik 1
PMCID: PMC2075833  PMID: 8611429

Abstract

An in vivo study of tissue distribution kinetics and photodynamic therapy (PDT) using 5-aminolaevulinic acid (ALA), chlorin e6 (Chl) and Photofrin (PII) was performed to evaluate the selectivity of porphyrin accumulation and tissue damage effects in a tumour model compared with normal tissue. C26 colon carcinoma of mice transplanted to the foot was used as a model for selectivity assessment. Fluorescence measurements of porphyrin accumulation in the foot bearing the tumour and in the normal foot were performed by the laser-induced fluorescence (LIF) system. A new high-intensity pulsed light delivery system (HIPLS) was used for simultaneous irradiation of both feet by light in the range of 600-800 nm, with light doses from 120 to 300 J cm-2 (0.6 J cm-2 per pulse, 1 Hz). Photoirradiation was carried out 1 h after injection of ALA, 3 h after injection of Chl and 24 h after injection of PII. A ratio of porphyrin accumulation in tumour vs normal tissue was used as an index of accumulation selectivity for each agent. PDT selectivity was determined from the regression analysis of normal and tumour tissue responses to PDT as a function of the applied light dose. A normal tissue damage index was defined at various values (50, 80 and 100%) of antitumour effect. The results of the LIF measurements revealed different patterns of fluorescence intensity in tumour and normal tissues for ALA-induced protoporphyrin IX (ALA-PpIX), Chl and PII. The results of PDT demonstrated the differences in both anti-tumour efficiency and normal tissue damage for the agents used. The selectivity of porphyrin accumulation in the tumour at the time of photoirradiation, as obtained by the LIF measurements, was in the order ALA-PpIX > Chl > PII. PDT selectivity at an equal value of anti-tumour effect was in the order Chl > ALA-PpIX > PII. Histological examination revealed certain differences in structural changes of normal skin after PDT with the agents tested. The results of PDT selectivity assessment with respect to differences in mechanisms of action for ALA, Chl and PII are discussed.

Full text

PDF
937

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cairnduff F., Stringer M. R., Hudson E. J., Ash D. V., Brown S. B. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer. 1994 Mar;69(3):605–608. doi: 10.1038/bjc.1994.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Divaris D. X., Kennedy J. C., Pottier R. H. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol. 1990 Apr;136(4):891–897. [PMC free article] [PubMed] [Google Scholar]
  4. Evensen J. F., Moan J. A test of different photosensitizers for photodynamic treatment of cancer in a murine tumor model. Photochem Photobiol. 1987 Nov;46(5):859–865. doi: 10.1111/j.1751-1097.1987.tb04860.x. [DOI] [PubMed] [Google Scholar]
  5. Fingar V. H., Wieman T. J., Doak K. W. Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction. Cancer Res. 1990 May 1;50(9):2599–2603. [PubMed] [Google Scholar]
  6. Fingar V. H., Wieman T. J., Wiehle S. A., Cerrito P. B. The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res. 1992 Sep 15;52(18):4914–4921. [PubMed] [Google Scholar]
  7. Frisoli J. K., Tudor E. G., Flotte T. J., Hasan T., Deutsch T. F., Schomacker K. T. Pharmacokinetics of a fluorescent drug using laser-induced fluorescence. Cancer Res. 1993 Dec 15;53(24):5954–5961. [PubMed] [Google Scholar]
  8. Gomer C. J., Ferrario A. Tissue distribution and photosensitizing properties of mono-L-aspartyl chlorin e6 in a mouse tumor model. Cancer Res. 1990 Jul 1;50(13):3985–3990. [PubMed] [Google Scholar]
  9. Gomer C. J. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol. 1991 Dec;54(6):1093–1107. doi: 10.1111/j.1751-1097.1991.tb02133.x. [DOI] [PubMed] [Google Scholar]
  10. Kennedy J. C., Nadeau P., Petryka Z. J., Pottier R. H., Weagle G. Clearance times of porphyrin derivatives from mice as measured by in vivo fluorescence spectroscopy. Photochem Photobiol. 1992 May;55(5):729–734. [PubMed] [Google Scholar]
  11. Kennedy J. C., Pottier R. H. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B. 1992 Jul 30;14(4):275–292. doi: 10.1016/1011-1344(92)85108-7. [DOI] [PubMed] [Google Scholar]
  12. Kennedy J. C., Pottier R. H., Pross D. C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990 Jun;6(1-2):143–148. doi: 10.1016/1011-1344(90)85083-9. [DOI] [PubMed] [Google Scholar]
  13. Kostenich G. A., Zhuravkin I. N., Furmanchuk A. V., Zhavrid E. A. Photodynamic therapy with chlorin e6. A morphologic study of tumor damage efficiency in experiment. J Photochem Photobiol B. 1991 Dec;11(3-4):307–318. doi: 10.1016/1011-1344(91)80036-h. [DOI] [PubMed] [Google Scholar]
  14. Kostenich G. A., Zhuravkin I. N., Furmanchuk A. V., Zhavrid E. A. Sensitivity of different rat tumour strains to photodynamic treatment with chlorin e6. J Photochem Photobiol B. 1993 Feb;17(2):187–194. doi: 10.1016/1011-1344(93)80012-x. [DOI] [PubMed] [Google Scholar]
  15. Kostenich G. A., Zhuravkin I. N., Zhavrid E. A. Experimental grounds for using chlorin e6 in the photodynamic therapy of malignant tumors. J Photochem Photobiol B. 1994 Mar;22(3):211–217. doi: 10.1016/1011-1344(93)06974-8. [DOI] [PubMed] [Google Scholar]
  16. Malik Z., Kostenich G., Roitman L., Ehrenberg B., Orenstein A. Topical application of 5-aminolevulinic acid, DMSO and EDTA: protoporphyrin IX accumulation in skin and tumours of mice. J Photochem Photobiol B. 1995 Jun;28(3):213–218. doi: 10.1016/1011-1344(95)07117-k. [DOI] [PubMed] [Google Scholar]
  17. Malik Z., Lugaci H. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer. 1987 Nov;56(5):589–595. doi: 10.1038/bjc.1987.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McMahon K. S., Wieman T. J., Moore P. H., Fingar V. H. Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res. 1994 Oct 15;54(20):5374–5379. [PubMed] [Google Scholar]
  19. Nelson J. S., Liaw L. H., Orenstein A., Roberts W. G., Berns M. W. Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst. 1988 Dec 21;80(20):1599–1605. doi: 10.1093/jnci/80.20.1599. [DOI] [PubMed] [Google Scholar]
  20. Peng Q., Moan J., Warloe T., Nesland J. M., Rimington C. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int J Cancer. 1992 Sep 30;52(3):433–443. doi: 10.1002/ijc.2910520318. [DOI] [PubMed] [Google Scholar]
  21. Regula J., Ravi B., Bedwell J., MacRobert A. J., Bown S. G. Photodynamic therapy using 5-aminolaevulinic acid for experimental pancreatic cancer--prolonged animal survival. Br J Cancer. 1994 Aug;70(2):248–254. doi: 10.1038/bjc.1994.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spikes J. D., Bommer J. C. Photosensitizing properties of mono-L-aspartyl chlorin e6 (NPe6): a candidate sensitizer for the photodynamic therapy of tumors. J Photochem Photobiol B. 1993 Feb;17(2):135–143. doi: 10.1016/1011-1344(93)80006-u. [DOI] [PubMed] [Google Scholar]
  23. Spikes J. D. Chlorins as photosensitizers in biology and medicine. J Photochem Photobiol B. 1990 Jul;6(3):259–274. doi: 10.1016/1011-1344(90)85096-f. [DOI] [PubMed] [Google Scholar]
  24. Svanberg K., Andersson T., Killander D., Wang I., Stenram U., Andersson-Engels S., Berg R., Johansson J., Svanberg S. Photodynamic therapy of non-melanoma malignant tumours of the skin using topical delta-amino levulinic acid sensitization and laser irradiation. Br J Dermatol. 1994 Jun;130(6):743–751. doi: 10.1111/j.1365-2133.1994.tb03412.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES