Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Oct;174(20):6653–6658. doi: 10.1128/jb.174.20.6653-6658.1992

Characterization of Tn5 mutants deficient in dissimilatory nitrite reduction in Pseudomonas sp. strain G-179, which contains a copper nitrite reductase.

R W Ye 1, B A Averill 1, J M Tiedje 1
PMCID: PMC207644  PMID: 1328160

Abstract

Tn5 was used to generate mutants that were deficient in the dissimilatory reduction of nitrite for Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. Three types of mutants were isolated. The first type showed a lack of growth on nitrate, nitrite, and nitrous oxide. The second type grew on nitrate and nitrous oxide but not on nitrite (Nir-). The two mutants of this type accumulated nitrite, showed no nitrite reductase activity, and had no detectable nitrite reductase protein bands in a Western blot (immunoblot). Tn5 insertions in these two mutants were clustered in the same region and were within the structural gene for nitrite reductase. The third type of mutant grew on nitrate but not on nitrite or nitrous oxide (N2O). The mutant of this type accumulated significant amounts of nitrite, NO, and N2O during anaerobic growth on nitrate and showed a slower growth rate than the wild type. Diethyldithiocarbamic acid, which inhibited nitrite reductase activity in the wild type, did not affect NO reductase activity, indicating that nitrite reductase did not participate in NO reduction. NO reductase activity in Nir- mutants was lower than that in the wild type when the strains were grown on nitrate but was the same as that in the wild type when the strains were grown on nitrous oxide. These results suggest that the reduction of NO and N2O was carried out by two distinct processes and that mutations affecting nitrite reduction resulted in reduced NO reductase activity following anaerobic growth with nitrate.

Full text

PDF
6653

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai H., Sanbongi Y., Igarashi Y., Kodama T. Cloning and sequencing of the gene encoding cytochrome c-551 from Pseudomonas aeruginosa. FEBS Lett. 1990 Feb 12;261(1):196–198. doi: 10.1016/0014-5793(90)80669-a. [DOI] [PubMed] [Google Scholar]
  2. Bazylinski D. A., Palome E., Blakemore N. A., Blakemore R. P. Denitrification by Chromobacterium violaceum. Appl Environ Microbiol. 1986 Oct;52(4):696–699. doi: 10.1128/aem.52.4.696-699.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun C., Zumft W. G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem. 1991 Dec 5;266(34):22785–22788. [PubMed] [Google Scholar]
  5. Carr G. J., Ferguson S. J. The nitric oxide reductase of Paracoccus denitrificans. Biochem J. 1990 Jul 15;269(2):423–429. doi: 10.1042/bj2690423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carr G. J., Page M. D., Ferguson S. J. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification. Eur J Biochem. 1989 Feb 15;179(3):683–692. doi: 10.1111/j.1432-1033.1989.tb14601.x. [DOI] [PubMed] [Google Scholar]
  7. Christensen S., Tiedje J. M. Sub-Parts-Per-Billion Nitrate Method: Use of an N(2)O-Producing Denitrifier to Convert NO(3) or NO(3) to N(2)O. Appl Environ Microbiol. 1988 Jun;54(6):1409–1413. doi: 10.1128/aem.54.6.1409-1413.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dermastia M., Turk T., Hollocher T. C. Nitric oxide reductase. Purification from Paracoccus denitrificans with use of a single column and some characteristics. J Biol Chem. 1991 Jun 15;266(17):10899–10905. [PubMed] [Google Scholar]
  10. Fenderson F. F., Kumar S., Adman E. T., Liu M. Y., Payne W. J., LeGall J. Amino acid sequence of nitrite reductase: a copper protein from Achromobacter cycloclastes. Biochemistry. 1991 Jul 23;30(29):7180–7185. doi: 10.1021/bi00243a020. [DOI] [PubMed] [Google Scholar]
  11. Firestone M. K., Firestone R. B., Tiedje J. M. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem Biophys Res Commun. 1979 Nov 14;91(1):10–16. doi: 10.1016/0006-291x(79)90575-8. [DOI] [PubMed] [Google Scholar]
  12. Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol. 1977 Apr;33(4):926–939. doi: 10.1128/aem.33.4.926-939.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Godden J. W., Turley S., Teller D. C., Adman E. T., Liu M. Y., Payne W. J., LeGall J. The 2.3 angstrom X-ray structure of nitrite reductase from Achromobacter cycloclastes. Science. 1991 Jul 26;253(5018):438–442. doi: 10.1126/science.1862344. [DOI] [PubMed] [Google Scholar]
  14. Goretski J., Hollocher T. C. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification. J Biol Chem. 1990 Jan 15;265(2):889–895. [PubMed] [Google Scholar]
  15. Goretski J., Zafiriou O. C., Hollocher T. C. Steady-state nitric oxide concentrations during denitrification. J Biol Chem. 1990 Jul 15;265(20):11535–11538. [PubMed] [Google Scholar]
  16. Heiss B., Frunzke K., Zumft W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol. 1989 Jun;171(6):3288–3297. doi: 10.1128/jb.171.6.3288-3297.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  18. Jackson M. A., Tiedje J. M., Averill B. A. Evidence for a NO-rebound mechanism for production of N2O from nitrite by the copper-containing nitrite reductase from Achromobacter cycloclastes. FEBS Lett. 1991 Oct 7;291(1):41–44. doi: 10.1016/0014-5793(91)81099-t. [DOI] [PubMed] [Google Scholar]
  19. Jüngst A., Wakabayashi S., Matsubara H., Zumft W. G. The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 1991 Feb 25;279(2):205–209. doi: 10.1016/0014-5793(91)80150-2. [DOI] [PubMed] [Google Scholar]
  20. Kakutani T., Watanabe H., Arima K., Beppu T. A blue protein as an inactivating factor for nitrite reductase from Alcaligenes faecalis strain S-6. J Biochem. 1981 Feb;89(2):463–472. doi: 10.1093/oxfordjournals.jbchem.a133221. [DOI] [PubMed] [Google Scholar]
  21. Kashem M. A., Dunford H. B., Liu M. Y., Payne W. J., LeGall J. Kinetic studies of the copper nitrite reductase from Achromobacter cycloclastes and its interaction with a blue copper protein. Biochem Biophys Res Commun. 1987 May 29;145(1):563–568. doi: 10.1016/0006-291x(87)91357-x. [DOI] [PubMed] [Google Scholar]
  22. Kim C. H., Hollocher T. C. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1). J Biol Chem. 1984 Feb 25;259(4):2092–2099. [PubMed] [Google Scholar]
  23. Nordling M., Young S., Karlsson B. G., Lundberg L. G. The structural gene for cytochrome c551 from Pseudomonas aeruginosa. The nucleotide sequence shows a location downstream of the nitrite reductase gene. FEBS Lett. 1990 Jan 1;259(2):230–232. doi: 10.1016/0014-5793(90)80015-b. [DOI] [PubMed] [Google Scholar]
  24. Shapleigh J. P., Davies K. J., Payne W. J. Detergent inhibition of nitric-oxide reductase activity. Biochim Biophys Acta. 1987 Feb 25;911(3):334–340. doi: 10.1016/0167-4838(87)90074-4. [DOI] [PubMed] [Google Scholar]
  25. Silvestrini M. C., Galeotti C. L., Gervais M., Schininà E., Barra D., Bossa F., Brunori M. Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein. FEBS Lett. 1989 Aug 28;254(1-2):33–38. doi: 10.1016/0014-5793(89)81004-x. [DOI] [PubMed] [Google Scholar]
  26. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weeg-Aerssens E., Wu W. S., Ye R. W., Tiedje J. M., Chang C. K. Purification of cytochrome cd1 nitrite reductase from Pseudomonas stutzeri JM300 and reconstitution with native and synthetic heme d1. J Biol Chem. 1991 Apr 25;266(12):7496–7502. [PubMed] [Google Scholar]
  28. Ye R. W., Arunakumari A., Averill B. A., Tiedje J. M. Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol. 1992 Apr;174(8):2560–2564. doi: 10.1128/jb.174.8.2560-2564.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ye R. W., Toro-Suarez I., Tiedje J. M., Averill B. A. H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria. Evidence for an electrophilic nitrosyl during reduction of nitric oxide. J Biol Chem. 1991 Jul 15;266(20):12848–12851. [PubMed] [Google Scholar]
  30. Zumft W. G., Döhler K., Körner H., Löchelt S., Viebrock A., Frunzke K. Defects in cytochrome cd1-dependent nitrite respiration of transposon Tn5-induced mutants from Pseudomonas stutzeri. Arch Microbiol. 1988;149(6):492–498. doi: 10.1007/BF00446750. [DOI] [PubMed] [Google Scholar]
  31. Zumft W. G., Gotzmann D. J., Kroneck P. M. Type 1, blue copper proteins constitute a respiratory nitrite-reducing system in Pseudomonas aureofaciens. Eur J Biochem. 1987 Oct 15;168(2):301–307. doi: 10.1111/j.1432-1033.1987.tb13421.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES