Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(6):1987–1991. doi: 10.1128/jb.173.6.1987-1991.1991

Distribution of folates and modified folates in extremely thermophilic bacteria.

R H White 1
PMCID: PMC207731  PMID: 1900506

Abstract

Analyses were made of the structures and levels of folates and modified folates present in extremely thermophilic bacteria. These procedures involved the chemical analysis of products resulting from the oxidative cleavage of the 6-substituted, folatelike tetrahydropterins present in the cells. Air-oxidized cell extracts of extreme thermophiles from two members of the archaebacterial order Thermococcales, Thermococcus celer and Pyrococcus furiosus, contained only 7-methylpterin, indicating that these cells contain a modified folate with a methylated pterin. Cell extracts also contained 6-acetyl-7-methyl-7,8-dihydropterin, another product derived from the oxidative cleavage of a dimethylated folate, demonstrating that both the C-7 and C-9 carbons of the pterin were methylated. Extracts, however, contained neither p-aminobenzoylpolyglutamates nor methaniline, the oxidative cleavage products of folates and methanopterin, respectively, indicating that they contain a previously undescribed C1 carrier(s). On the basis of the level of the 7-methylpterin isolated, the levels of modified folate were 2 to 10 times higher than those typically found in mesophilic bacteria and 10 to 100 times less than the level of methanopterin found in the methanogenic bacteria. Oxidized cell extracts of Sulfolobus spp. of the archaebacterial order Sulfolobales contained only pterin, and, like members of the order Thermococcales, they contained neither-p-aminobenzoylpolyglutamates nor methaniline. Oxidized cell extracts of the extreme thermophiles Pyrobaculum sp. strain H10 and Pyrodictium occultum, from the archaebacterial orders Thermoproteales and Pyrodictiales, respectively, and Thermotoga maritima from the eubacterial order Thermotogales, contained pterin and p-aminobenzoylpolyglutamates, indicating that these cells contained unmodified folates. The levels of p-aminobenzoylpolyglutamates in these archaebacterial cell extracts indicate that the folates were present in the cells at levels 4 to 10 times higher than generally found in those mesophilic eubacteria which do not folates in energy metabolism. The levels and chain lengths of the of p-aminobenzoylpolyglutamates present in Thermotoga maritima were typical of those found in mesophilic eubacteria.

Full text

PDF
1987

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angier R. B., Boothe J. H., Hutchings B. L., Mowat J. H., Semb J., Stokstad E. L., Subbarow Y., Waller C. W., Cosulich D. B., Fahrenbach M. J., Hultquist M. E., Kuh E., Northey E. H., Seeger D. R., Sickels J. P., Smith J. M., Jr The Structure and Synthesis of the Liver L. casei Factor. Science. 1946 May 31;103(2683):667–669. doi: 10.1126/science.103.2683.667. [DOI] [PubMed] [Google Scholar]
  2. Brown S. H., Kelly R. M. Cultivation Techniques for Hyperthermophilic Archaebacteria: Continuous Culture of Pyrococcus furiosus at Temperatures near 100 degrees C. Appl Environ Microbiol. 1989 Aug;55(8):2086–2088. doi: 10.1128/aem.55.8.2086-2088.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant F. O., Adams M. W. Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem. 1989 Mar 25;264(9):5070–5079. [PubMed] [Google Scholar]
  4. Curthoys N. P., Scott J. M., Rabinowitz J. C. Folate coenzymes of Clostridium acidi-urici. The isolation of (l)-5,10-methenyltetrahydropteroyltriglutamate, its conversion to (l)-tetrahydropteroyltriglutamate and (l)-10-( 14 C)formyltetrahydropteroyltriglutamate, and the synthesis of (l)-10-formyl-(6,7- 3 H 2 )tetrahydropteroyltriglutamate and (l)-(6,7- 3 H 2 )tetrahydropteroyltriglutamate. J Biol Chem. 1972 Apr 10;247(7):1959–1964. [PubMed] [Google Scholar]
  5. Ferone R., Hanlon M. H., Singer S. C., Hunt D. F. alpha-Carboxyl-linked glutamates in the folylpolyglutamates of Escherichia coli. J Biol Chem. 1986 Dec 15;261(35):16356–16362. [PubMed] [Google Scholar]
  6. Furness R. A., Loewen P. C. Detection of p-aminobenzoylpoly(gamma-glutamates) using fluorescamine. Anal Biochem. 1981 Oct;117(1):126–135. doi: 10.1016/0003-2697(81)90702-8. [DOI] [PubMed] [Google Scholar]
  7. Jones W. J., Donnelly M. I., Wolfe R. S. Evidence of a common pathway of carbon dioxide reduction to methane in methanogens. J Bacteriol. 1985 Jul;163(1):126–131. doi: 10.1128/jb.163.1.126-131.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keltjens J. T., Rozie H. J., Vogels G. D. Identification of 6-acetyl-7-methyl-7,8-dihydropterin as a degradation product of 5,10-methenyl-5,6,7,8-tetrahydromethanopterin. Arch Biochem Biophys. 1984 Mar;229(2):532–537. doi: 10.1016/0003-9861(84)90184-x. [DOI] [PubMed] [Google Scholar]
  9. Leigh J. A. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria. Appl Environ Microbiol. 1983 Mar;45(3):800–803. doi: 10.1128/aem.45.3.800-803.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leigh J. A., Wolfe R. S. Carbon dioxide reduction factor and methanopterin, two coenzymes required for CO2 reduction to methane by extracts of Methanobacterium. J Biol Chem. 1983 Jun 25;258(12):7536–7540. [PubMed] [Google Scholar]
  11. Ljungdahl L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol. 1986;40:415–450. doi: 10.1146/annurev.mi.40.100186.002215. [DOI] [PubMed] [Google Scholar]
  12. Raemakers-Franken P. C., Voncken F. G., Korteland J., Keltjens J. T., van der Drift C., Vogels G. D. Structural characterization of tatiopterin, a novel pterin isolated from Methanogenium tationis. Biofactors. 1989 Dec;2(2):117–122. [PubMed] [Google Scholar]
  13. Rouvière P. E., Wolfe R. S. Novel biochemistry of methanogenesis. J Biol Chem. 1988 Jun 15;263(17):7913–7916. [PubMed] [Google Scholar]
  14. Voss T., Melchers K., Scheirle G., Schäfer K. P. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol. 1991 Jan;4(1):88–94. doi: 10.1165/ajrcmb/4.1.88. [DOI] [PubMed] [Google Scholar]
  15. White R. H. 7-Methylpterin and 7-methyllumizine: oxidative degradation products of 7-methyl-substituted pteridines in methanogenic bacteria. J Bacteriol. 1985 May;162(2):516–520. doi: 10.1128/jb.162.2.516-520.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. White R. H. Analysis and characterization of the folates in the nonmethanogenic archaebacteria. J Bacteriol. 1988 Oct;170(10):4608–4612. doi: 10.1128/jb.170.10.4608-4612.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. White R. H. Biosynthesis of methanopterin. Biochemistry. 1990 Jun 5;29(22):5397–5404. doi: 10.1021/bi00474a027. [DOI] [PubMed] [Google Scholar]
  18. White R. H. Biosynthesis of the 2-(aminomethyl)-4-(hydroxymethyl)furan subunit of methanofuran. Biochemistry. 1988 Jun 14;27(12):4415–4420. doi: 10.1021/bi00412a031. [DOI] [PubMed] [Google Scholar]
  19. White R. H. Biosynthesis of the 7-methylated pterin of methanopterin. J Bacteriol. 1986 Jan;165(1):215–218. doi: 10.1128/jb.165.1.215-218.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Worrell V. E., Nagle D. P., Jr Folic acid and pteroylpolyglutamate contents of archaebacteria. J Bacteriol. 1988 Sep;170(9):4420–4423. doi: 10.1128/jb.170.9.4420-4423.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Beelen P., Labro J. F., Keltjens J. T., Geerts W. J., Vogels G. D., Laarhoven W. H., Guijt W., Haasnoot C. A. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem. 1984 Mar 1;139(2):359–365. doi: 10.1111/j.1432-1033.1984.tb08014.x. [DOI] [PubMed] [Google Scholar]
  23. van Beelen P., Stassen A. P., Bosch J. W., Vogels G. D., Guijt W., Haasnoot C. A. Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem. 1984 Feb 1;138(3):563–571. doi: 10.1111/j.1432-1033.1984.tb07951.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES