Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Apr;173(8):2716–2719. doi: 10.1128/jb.173.8.2716-2719.1991

A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae.

H Nishimura 1, Y Kawasaki 1, K Nosaka 1, Y Kaneko 1, A Iwashima 1
PMCID: PMC207844  PMID: 1849514

Abstract

We identified a strain carrying a recessive constitutive mutation (thi80-1) with an altered thiamine transport system, thiamine-repressible acid phosphatase, and several enzymes of thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. The mutant shows markedly reduced activity of thiamine pyrophosphokinase (EC 2.7.6.2) and high resistance to oxythiamine, a thiamine antagonist whose potency depends on thiamine pyrophosphokinase activity. The intracellular thiamine pyrophosphate content of the mutant cells grown with exogenous thiamine (2 x 10(-7) M) was found to be about half that of the wild-type strain under the same conditions. These results suggest that the utilization and synthesis of thiamine in Saccharomyces cerevisiae is controlled negatively by the intracellular thiamine pyrophosphate level.

Full text

PDF
2716

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Iwashima A., Nishimura H. Isolation of a thiamine-binding protein from Saccharomyces cerevisiae. Biochim Biophys Acta. 1979 Mar 27;577(1):217–220. doi: 10.1016/0005-2795(79)90023-0. [DOI] [PubMed] [Google Scholar]
  2. Iwashima A., Nishimura H., Nose Y. Soluble and membrane-bound thiamine-binding proteins from Saccharomyces cerevisiae. Biochim Biophys Acta. 1979 Nov 2;557(2):460–468. doi: 10.1016/0005-2736(79)90343-2. [DOI] [PubMed] [Google Scholar]
  3. Iwashima A., Nishino H., Nose Y. Carrier-mediated transport of thiamine in baker's yeast. Biochim Biophys Acta. 1973 Dec 13;330(2):222–234. doi: 10.1016/0005-2736(73)90227-7. [DOI] [PubMed] [Google Scholar]
  4. Iwashima A., Nose Y. Regulation of thiamine transport in Saccharomyces cerevisiae. J Bacteriol. 1976 Dec;128(3):855–857. doi: 10.1128/jb.128.3.855-857.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Iwashima A., Wakabayashi Y., Nose Y. Thiamine transport mutants of Saccharomyces cerevisiae. Biochim Biophys Acta. 1975 Dec 1;413(2):243–247. doi: 10.1016/0005-2736(75)90108-x. [DOI] [PubMed] [Google Scholar]
  6. Iwashima A., Yoshioka K., Nishimura H., Nosaka K. Reversal of pyrithiamine-induced growth inhibition of Saccharomyces cerevisiae by oxythiamine. Experientia. 1984 Jun 15;40(6):582–583. doi: 10.1007/BF01982343. [DOI] [PubMed] [Google Scholar]
  7. Kawasaki Y., Nosaka K., Kaneko Y., Nishimura H., Iwashima A. Regulation of thiamine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1990 Oct;172(10):6145–6147. doi: 10.1128/jb.172.10.6145-6147.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lindegren G., Hwang Y. L., Oshima Y., Lindegren C. C. Genetical mutants induced by ethyl methanesulfonate in Saccharomyces. Can J Genet Cytol. 1965 Sep;7(3):491–499. doi: 10.1139/g65-064. [DOI] [PubMed] [Google Scholar]
  10. Nosaka K., Kaneko Y., Nishimura H., Iwashima A. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast. FEMS Microbiol Lett. 1989 Jul 1;51(1):55–59. doi: 10.1016/0378-1097(89)90077-3. [DOI] [PubMed] [Google Scholar]
  11. To-E A., Ueda Y., Kakimoto S. I., Oshima Y. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J Bacteriol. 1973 Feb;113(2):727–738. doi: 10.1128/jb.113.2.727-738.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Toh-e A., Kakimoto S. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Dec 30;143(1):65–70. doi: 10.1007/BF00269421. [DOI] [PubMed] [Google Scholar]
  13. Toh-e A., Kakimoto S., Oshima Y. Two new genes controlling the constitutive acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Nov 3;141(1):81–83. doi: 10.1007/BF00332380. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES