Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jun;173(11):3389–3396. doi: 10.1128/jb.173.11.3389-3396.1991

Identification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase.

G V Plano 1, H H Winkler 1
PMCID: PMC207950  PMID: 1904433

Abstract

The Rickettsia prowazekii ATP/ADP translocase was identified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis using antibodies raised against a synthetic peptide corresponding in sequence to the carboxyl-terminal 17 amino acids of the carrier. Both the translocase of R. prowazekii and that expressed by Escherichia coli transformants containing the rickettsial gene had an apparent molecular mass of 36,500 Da by SDS-PAGE analysis, a mass considerably less than that deduced from the sequence of the gene. The SDS-solubilized translocase aggregated upon heating at 100 degrees C in the presence of disulfide bond-reducing agents. Similar concentrations of disulfide bond-reducing agents inhibited the exchange transport of adenine nucleotides by both R. prowazekii and translocase-expressing E. coli. These data suggested that an intramolecular disulfide bond in the translocase was essential for transport activity. The antipeptide antibodies used for identification of the translocase bound preferentially to inside-out membrane vesicles of translocase-expressing E. coli relative to right-side-out spheroplasts, thus indicating that the carboxyl terminus of the carrier is located on the cytoplasmic side of the bacterial inner membrane. Protease studies were unable to localize the carboxyl terminus because of the resistance of this region of the native translocase to proteolytic cleavage. These data in conjunction with hydrophobicity analysis were used to construct an initial topological model of the translocase within the cell membrane.

Full text

PDF
3389

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquila H., Link T. A., Klingenberg M. Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett. 1987 Feb 9;212(1):1–9. doi: 10.1016/0014-5793(87)81546-6. [DOI] [PubMed] [Google Scholar]
  2. Atkinson W. H., Winkler H. H. Permeability of Rickettsia prowazekii to NAD. J Bacteriol. 1989 Feb;171(2):761–766. doi: 10.1128/jb.171.2.761-766.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson W. H., Winkler H. H. Transport of AMP by Rickettsia prowazekii. J Bacteriol. 1985 Jan;161(1):32–38. doi: 10.1128/jb.161.1.32-38.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bogner W., Aquila H., Klingenberg M. The transmembrane arrangement of the ADP/ATP carrier as elucidated by the lysine reagent pyridoxal 5-phosphate. Eur J Biochem. 1986 Dec 15;161(3):611–620. doi: 10.1111/j.1432-1033.1986.tb10485.x. [DOI] [PubMed] [Google Scholar]
  5. Botfield M. C., Wilson T. H. Peptide-specific antibody for the melibiose carrier of Escherichia coli localizes the carboxyl terminus to the cytoplasmic face of the membrane. J Biol Chem. 1989 Jul 15;264(20):11649–11652. [PubMed] [Google Scholar]
  6. Büchel D. E., Gronenborn B., Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980 Feb 7;283(5747):541–545. doi: 10.1038/283541a0. [DOI] [PubMed] [Google Scholar]
  7. Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danho W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4672–4676. doi: 10.1073/pnas.81.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen C. C., Tsuchiya T., Yamane Y., Wood J. M., Wilson T. H. Na+ (Li+)-proline cotransport in Escherichia coli. J Membr Biol. 1985;84(2):157–164. doi: 10.1007/BF01872213. [DOI] [PubMed] [Google Scholar]
  9. Chen C. C., Wilson T. H. Solubilization and functional reconstitution of the proline transport system of Escherichia coli. J Biol Chem. 1986 Feb 25;261(6):2599–2604. [PubMed] [Google Scholar]
  10. Dunn S. D. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. doi: 10.1016/0003-2697(86)90207-1. [DOI] [PubMed] [Google Scholar]
  11. Foster D. L., Boublik M., Kaback H. R. Structure of the lac carrier protein of Escherichia coli. J Biol Chem. 1983 Jan 10;258(1):31–34. [PubMed] [Google Scholar]
  12. Futai M. Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J Membr Biol. 1974;15(1):15–28. doi: 10.1007/BF01870079. [DOI] [PubMed] [Google Scholar]
  13. Futai M., Tanaka Y. Localization of D-lactate dehydrogenase in membrane vesicles prepared by using a french press or ethylenediaminetetraacetate-lysozyme from Escherichia coli. J Bacteriol. 1975 Oct;124(1):470–475. doi: 10.1128/jb.124.1.470-475.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanada K., Yamato I., Anraku Y. Identification of proline carrier in Escherichia coli K-12. FEBS Lett. 1985 Oct 28;191(2):278–282. doi: 10.1016/0014-5793(85)80024-7. [DOI] [PubMed] [Google Scholar]
  15. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  16. Henderson P. J., Lardy H. A. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970 Mar 25;245(6):1319–1326. [PubMed] [Google Scholar]
  17. Henderson P. J., Lardy H. A., Dorschner E. Factors affecting the inhibition of adenine nucleotide translocase by bongkrekic acid. Biochemistry. 1970 Aug 18;9(17):3453–3457. doi: 10.1021/bi00819a026. [DOI] [PubMed] [Google Scholar]
  18. Ito K. Identification of the secY (prlA) gene product involved in protein export in Escherichia coli. Mol Gen Genet. 1984;197(2):204–208. doi: 10.1007/BF00330964. [DOI] [PubMed] [Google Scholar]
  19. Klingenberg M., Grebe K., Heldt H. W. On the inhibition of the adenine nucleotide translocation by bongkrekic acid. Biochem Biophys Res Commun. 1970 May 11;39(3):344–351. doi: 10.1016/0006-291x(70)90582-6. [DOI] [PubMed] [Google Scholar]
  20. Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
  21. Krause D. C., Winkler H. H., Wood D. O. Cloning and expression of the Rickettsia prowazekii ADP/ATP translocator in Escherichia coli. Proc Natl Acad Sci U S A. 1985 May;82(9):3015–3019. doi: 10.1073/pnas.82.9.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Moxham C. P., Malbon C. C. Fat cell beta 1-adrenergic receptor: structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry. 1985 Oct 22;24(22):6072–6077. doi: 10.1021/bi00343a007. [DOI] [PubMed] [Google Scholar]
  24. Plano G. V., Winkler H. H. Solubilization and reconstitution of the Rickettsia prowazekii ATP/ADP translocase. J Membr Biol. 1989 Sep;110(3):227–233. doi: 10.1007/BF01869153. [DOI] [PubMed] [Google Scholar]
  25. Plano G. V., Wood D. O., Winkler H. H. Rickettsia prowazekii and ATP/ADP translocase. Analysis of gene fusions encoding beta-galactosidase-ATP/ADP translocase fusion proteins. Ann N Y Acad Sci. 1990;590:397–407. doi: 10.1111/j.1749-6632.1990.tb42247.x. [DOI] [PubMed] [Google Scholar]
  26. Runswick M. J., Powell S. J., Nyren P., Walker J. E. Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J. 1987 May;6(5):1367–1373. doi: 10.1002/j.1460-2075.1987.tb02377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  28. Seckler R., Wright J. K., Overath P. Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane. J Biol Chem. 1983 Sep 25;258(18):10817–10820. [PubMed] [Google Scholar]
  29. Shepherd W. D., Kaplan S. Effect of heat and 2-mercaptoethanol on intracytoplasmic membrane polypeptides of Rhodopseudomonas sphaeroides. J Bacteriol. 1978 Aug;135(2):656–667. doi: 10.1128/jb.135.2.656-667.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stoker N. G., Pratt J. M., Spratt B. G. Identification of the rodA gene product of Escherichia coli. J Bacteriol. 1983 Aug;155(2):854–859. doi: 10.1128/jb.155.2.854-859.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  32. Szewczyk B., Kozloff L. M. A method for the efficient blotting of strongly basic proteins from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Anal Biochem. 1985 Nov 1;150(2):403–407. doi: 10.1016/0003-2697(85)90528-7. [DOI] [PubMed] [Google Scholar]
  33. Vignais P. V., Vignais P. M., Defaye G. Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin). Biochemistry. 1973 Apr 10;12(8):1508–1519. doi: 10.1021/bi00732a007. [DOI] [PubMed] [Google Scholar]
  34. Williamson L. R., Plano G. V., Winkler H. H., Krause D. C., Wood D. O. Nucleotide sequence of the Rickettsia prowazekii ATP/ADP translocase-encoding gene. Gene. 1989 Aug 15;80(2):269–278. doi: 10.1016/0378-1119(89)90291-6. [DOI] [PubMed] [Google Scholar]
  35. Winkler H. H., Daugherty R. M. Acquisition of glucose by Rickettsia prowazekii through the nucleotide intermediate uridine 5'-diphosphoglucose. J Bacteriol. 1986 Sep;167(3):805–808. doi: 10.1128/jb.167.3.805-808.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Winkler H. H., Daugherty R. M. Regulatory role of phosphate and other anions in transport of ADP and ATP by Rickettsia prowazekii. J Bacteriol. 1984 Oct;160(1):76–79. doi: 10.1128/jb.160.1.76-79.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Winkler H. H. Rickettsial permeability. An ADP-ATP transport system. J Biol Chem. 1976 Jan 25;251(2):389–396. [PubMed] [Google Scholar]
  38. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES