Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jun;173(12):3907–3910. doi: 10.1128/jb.173.12.3907-3910.1991

Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures.

G D Sprott 1, M Meloche 1, J C Richards 1
PMCID: PMC208025  PMID: 2050642

Abstract

Growth of Methanococcus jannaschii over a wide temperature range (47 to 75 degrees C) is correlated with an ability to alter dramatically the proportions of three ether lipid cores. These lipids shifted from predominantly diether (2,3-di-O-phytanyl-sn-glycerol) at the lower growth temperatures to macrocyclic diether and tetraether at near optimal growth temperatures. Lipid head groups varied as well, especially with respect to an increase in phosphate at the higher temperatures.

Full text

PDF
3907

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Comita P. B., Gagosian R. B., Pang H., Costello C. E. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem. 1984 Dec 25;259(24):15234–15241. [PubMed] [Google Scholar]
  2. De Rosa M., Gambacorta A., Gliozzi A. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol Rev. 1986 Mar;50(1):70–80. doi: 10.1128/mr.50.1.70-80.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ekiel I., Jarrell K. F., Sprott G. D. Amino acid biosynthesis and sodium-dependent transport in Methanococcus voltae, as revealed by 13C NMR. Eur J Biochem. 1985 Jun 3;149(2):437–444. doi: 10.1111/j.1432-1033.1985.tb08944.x. [DOI] [PubMed] [Google Scholar]
  4. Ekiel I., Smith I. C., Sprott G. D. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol. 1983 Oct;156(1):316–326. doi: 10.1128/jb.156.1.316-326.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferrante G., Ekiel I., Sprott G. D. Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. J Biol Chem. 1986 Dec 25;261(36):17062–17066. [PubMed] [Google Scholar]
  6. Ferrante G., Richards J. C., Sprott G. D. Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii. Biochem Cell Biol. 1990 Jan;68(1):274–283. doi: 10.1139/o90-038. [DOI] [PubMed] [Google Scholar]
  7. Kates M. Structure, physical properties, and function of archaebacterial lipids. Prog Clin Biol Res. 1988;282:357–384. [PubMed] [Google Scholar]
  8. Kates M. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids. 1978;15(4):301–342. doi: 10.1016/0079-6832(77)90011-8. [DOI] [PubMed] [Google Scholar]
  9. Kushwaha S. C., Kates M. Modification of phenol-sulfuric acid method for the estimation of sugars in lipids. Lipids. 1981 May;16(5):372–373. doi: 10.1007/BF02534965. [DOI] [PubMed] [Google Scholar]
  10. Kushwaha S. C., Kates M., Sprott G. D., Smith I. C. Novel polar lipids from the methanogen Methanospirillum hungatei GP1. Biochim Biophys Acta. 1981 Apr 23;664(1):156–173. doi: 10.1016/0005-2760(81)90038-2. [DOI] [PubMed] [Google Scholar]
  11. Sprott G. D., Ekiel I., Dicaire C. Novel, acid-labile, hydroxydiether lipid cores in methanogenic bacteria. J Biol Chem. 1990 Aug 15;265(23):13735–13740. [PubMed] [Google Scholar]
  12. Tornabene T. G., Langworthy T. A. Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. Science. 1979 Jan 5;203(4375):51–53. doi: 10.1126/science.758677. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES