Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jul;173(14):4318–4324. doi: 10.1128/jb.173.14.4318-4324.1991

Evidence for N----O acetyl migration as the mechanism for O acetylation of peptidoglycan in Proteus mirabilis.

C Dupont 1, A J Clarke 1
PMCID: PMC208091  PMID: 2066331

Abstract

O-acetylated peptidoglycan was purified from Proteus mirabilis grown in the presence of specifically radiolabelled glucosamine derivatives, and the migration of the radiolabel was monitored. Mild-base hydrolysis of the isolated peptidoglycan (to release ester-linked acetate) from cells grown in the presence of 40 microM [acetyl-3H]N-acetyl-D-glucosamine resulted in the release of [3H]acetate, as detected by high-pressure liquid chromatography. The inclusion of either acetate, pyruvate, or acetyl phosphate, each at 1 mM final concentration, did not result in a diminution of mild-base-released [3H]acetate levels. No such release of [3H]acetate was observed with peptidoglycan isolated from either Escherichia coli incubated with the same radiolabel or P. mirabilis grown with [1,6-3H]N-acetyl-D-glucosamine or D-[1-14C]glucosamine. These observations support a hypothesis that O acetylation occurs by N----O acetyl transfer within the sacculus. A decrease in [3H]acetate release by mild-base hydrolysis was observed with the peptidoglycan of P. mirabilis cultures incubated in the presence of antagonists of peptidoglycan biosynthesis, penicillin G and D-cycloserine. The absence of free-amino sugars in the peptidoglycan of P. mirabilis but the detection of glucosamine in spent culture broths implies that N----O transacetylation is intimately associated with peptidoglycan turnover.

Full text

PDF
4318

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAMS A. O-acetyl groups in the cell wall of Streptococcus faecalis. J Biol Chem. 1958 Feb;230(2):949–959. [PubMed] [Google Scholar]
  2. BRUMFITT W. The mechanism of development of resistance to lysozyme by some gram-positive bacteria and its results. Br J Exp Pathol. 1959 Oct;40:441–451. [PMC free article] [PubMed] [Google Scholar]
  3. BRUMFITT W., WARDLAW A. C., PARK J. T. Development of lysozyme-resistance in Micrococcus lysodiekticus and its association with an increased O-acetyl content of the cell wall. Nature. 1958 Jun 28;181(4626):1783–1784. doi: 10.1038/1811783a0. [DOI] [PubMed] [Google Scholar]
  4. Blake C. C., Johnson L. N., Mair G. A., North A. C., Phillips D. C., Sarma V. R. Crystallographic studies of the activity of hen egg-white lysozyme. Proc R Soc Lond B Biol Sci. 1967 Apr 18;167(1009):378–388. doi: 10.1098/rspb.1967.0035. [DOI] [PubMed] [Google Scholar]
  5. Blundell J. K., Perkins H. R. Effects of beta-lactam antibiotics on peptidoglycan synthesis in growing Neisseria gonorrhoeae, including changes in the degree of O-acetylation. J Bacteriol. 1981 Aug;147(2):633–641. doi: 10.1128/jb.147.2.633-641.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dobrogosz W. J. N-acetylglucosamine assimilation in Escherichia coli and its relation to catabolite repression. J Bacteriol. 1968 Feb;95(2):585–591. doi: 10.1128/jb.95.2.585-591.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dougherty T. J. Involvement of a change in penicillin target and peptidoglycan structure in low-level resistance to beta-lactam antibiotics in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1985 Jul;28(1):90–95. doi: 10.1128/aac.28.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dougherty T. J. Peptidoglycan biosynthesis in Neisseria gonorrhoeae strains sensitive and intrinsically resistant to beta-lactam antibiotics. J Bacteriol. 1983 Jan;153(1):429–435. doi: 10.1128/jb.153.1.429-435.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle R. J., Chaloupka J., Vinter V. Turnover of cell walls in microorganisms. Microbiol Rev. 1988 Dec;52(4):554–567. doi: 10.1128/mr.52.4.554-567.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dupont C., Clarke A. J. Dependence of lysozyme-catalysed solubilization of Proteus mirabilis peptidoglycan on the extent of O-acetylation. Eur J Biochem. 1991 Feb 14;195(3):763–769. doi: 10.1111/j.1432-1033.1991.tb15764.x. [DOI] [PubMed] [Google Scholar]
  11. Fleck J., Mock M., Minck R., Ghuysen J. M. The cell envelope in Proteus vulgaris P 18. Isolation and characterization of the peptidoglycan component. Biochim Biophys Acta. 1971 Jun 1;233(3):489–503. doi: 10.1016/0005-2736(71)90149-0. [DOI] [PubMed] [Google Scholar]
  12. Fleming T. J., Wallsmith D. E., Rosenthal R. S. Arthropathic properties of gonococcal peptidoglycan fragments: implications for the pathogenesis of disseminated gonococcal disease. Infect Immun. 1986 May;52(2):600–608. doi: 10.1128/iai.52.2.600-608.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GHUYSEN J. M., STROMINGER J. L. STRUCTURE OF THE CELL WALL OF STAPHYLOCOCCUS AUREUS, STRAIN COPENHAGEN. II. SEPARATION AND STRUCTURE OF DISACCHARIDES. Biochemistry. 1963 Sep-Oct;2:1119–1125. doi: 10.1021/bi00905a036. [DOI] [PubMed] [Google Scholar]
  14. Gmeiner J., Kroll H. P. Murein biosynthesis and O-acetylation of N-acetylmuramic acid during the cell-division cycle of Proteus mirabilis. Eur J Biochem. 1981 Jun;117(1):171–177. doi: 10.1111/j.1432-1033.1981.tb06317.x. [DOI] [PubMed] [Google Scholar]
  15. Gmeiner J., Sarnow E. Murein biosynthesis in synchronized cells of Proteus mirabilis. Quantitative analysis of O-acetylated murein subunits and of chain terminators incorporated into the sacculus during the cell cycle. Eur J Biochem. 1987 Mar 2;163(2):389–395. doi: 10.1111/j.1432-1033.1987.tb10811.x. [DOI] [PubMed] [Google Scholar]
  16. Goodell E. W., Higgins C. F. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J Bacteriol. 1987 Aug;169(8):3861–3865. doi: 10.1128/jb.169.8.3861-3865.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grabow W. O., Smit J. A. Methionine synthesis in Proteus mirabilis. J Gen Microbiol. 1967 Jan;46(1):47–57. doi: 10.1099/00221287-46-1-47. [DOI] [PubMed] [Google Scholar]
  18. Hoyle B. D., Beveridge T. J. Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol. 1984 Feb;30(2):204–211. doi: 10.1139/m84-031. [DOI] [PubMed] [Google Scholar]
  19. Karkhanis Y. D., Zeltner J. Y., Jackson J. J., Carlo D. J. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria. Anal Biochem. 1978 Apr;85(2):595–601. doi: 10.1016/0003-2697(78)90260-9. [DOI] [PubMed] [Google Scholar]
  20. Lear A. L., Perkins H. R. Degrees of O-acetylation and cross-linking of the peptidoglycan of Neisseria gonorrhoeae during growth. J Gen Microbiol. 1983 Mar;129(3):885–888. doi: 10.1099/00221287-129-3-885. [DOI] [PubMed] [Google Scholar]
  21. Lear A. L., Perkins H. R. O-acetylation of peptidoglycan in Neisseria gonorrhoeae. Investigation of lipid-linked intermediates and glycan chains newly incorporated into the cell wall. J Gen Microbiol. 1986 Sep;132(9):2413–2420. doi: 10.1099/00221287-132-9-2413. [DOI] [PubMed] [Google Scholar]
  22. Lear A. L., Perkins H. R. Progress of O-acetylation and cross-linking of peptidoglycan in Neisseria gonorrhoeae grown in the presence of penicillin. J Gen Microbiol. 1987 Jul;133(7):1743–1750. doi: 10.1099/00221287-133-7-1743. [DOI] [PubMed] [Google Scholar]
  23. Martin H. H., Gmeiner J. Modification of peptidoglycan structure by penicillin action in cell walls of Proteus mirabilis. Eur J Biochem. 1979 Apr;95(3):487–495. doi: 10.1111/j.1432-1033.1979.tb12988.x. [DOI] [PubMed] [Google Scholar]
  24. Martin H. H. In vitro synthesis of peptidoglycan by spheroplasts of Proteus mirabilis grown in the presence of penicillin. Arch Microbiol. 1984 Nov;139(4):371–375. doi: 10.1007/BF00408382. [DOI] [PubMed] [Google Scholar]
  25. Martin H. H., Maskos C., Burger R. D-alanyl-D-alanine carboxypeptidase in the bacterial form and L-form of Proteus mirabilis. Eur J Biochem. 1975 Jul 1;55(2):465–473. doi: 10.1111/j.1432-1033.1975.tb02183.x. [DOI] [PubMed] [Google Scholar]
  26. Morihara K., Oka T. Effect of secondary interaction on the enzymatic activity of trypsin-like enzymes from Streptomyces. Arch Biochem Biophys. 1973 Jun;156(2):764–771. doi: 10.1016/0003-9861(73)90330-5. [DOI] [PubMed] [Google Scholar]
  27. Negro A., Garbisa S., Gotte L., Spina M. The use of reverse-phase high-performance liquid chromatography and precolumn derivatization with dansyl chloride for quantitation of specific amino acids in collagen and elastin. Anal Biochem. 1987 Jan;160(1):39–46. doi: 10.1016/0003-2697(87)90611-7. [DOI] [PubMed] [Google Scholar]
  28. Rosenthal R. S., Folkening W. J., Miller D. R., Swim S. C. Resistance of O-acetylated gonococcal peptidoglycan to human peptidoglycan-degrading enzymes. Infect Immun. 1983 Jun;40(3):903–911. doi: 10.1128/iai.40.3.903-911.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosenthal R. S., Gfell M. A., Folkening W. J. Influence of protein synthesis inhibitors on regulation of extent of O-acetylation of gonococcal peptidoglycan. Infect Immun. 1985 Jul;49(1):7–13. doi: 10.1128/iai.49.1.7-13.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sidow T., Johannsen L., Labischinski H. Penicillin-induced changes in the cell wall composition of Staphylococcus aureus before the onset of bacteriolysis. Arch Microbiol. 1990;154(1):73–81. doi: 10.1007/BF00249181. [DOI] [PubMed] [Google Scholar]
  31. Smith T. J., Hanna P. E. N-acetyltransferase multiplicity and the bioactivation of N-arylhydroxamic acids by hamster hepatic and intestinal enzymes. Carcinogenesis. 1986 May;7(5):697–702. doi: 10.1093/carcin/7.5.697. [DOI] [PubMed] [Google Scholar]
  32. Snowden M. A., Perkins H. R., Wyke A. W., Hayes M. V., Ward J. B. Cross-linking and O-acetylation of newly synthesized peptidoglycan in Staphylococcus aureus H. J Gen Microbiol. 1989 Nov;135(11):3015–3022. doi: 10.1099/00221287-135-11-3015. [DOI] [PubMed] [Google Scholar]
  33. Swim S. C., Gfell M. A., Wilde C. E., 3rd, Rosenthal R. S. Strain distribution in extents of lysozyme resistance and O-acetylation of gonococcal peptidoglycan determined by high-performance liquid chromatography. Infect Immun. 1983 Nov;42(2):446–452. doi: 10.1128/iai.42.2.446-452.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES