Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jul;173(14):4386–4393. doi: 10.1128/jb.173.14.4386-4393.1991

Cloning of pectate lyase gene pel from Pseudomonas fluorescens and detection of sequences homologous to pel in Pseudomonas viridiflava and Pseudomonas putida.

C H Liao 1
PMCID: PMC208100  PMID: 1906062

Abstract

Pectate lyase (PL) depolymerizes pectin and other polygalacturonates (PGAs) and is thought to play a role in bacterial invasion of plants. Production of PL by the soft-rotting pathogen Pseudomonas fluorescens CY091 is regulated by Ca2+. In the presence of Ca2+, this bacterium constitutively synthesizes PL in media containing glucose, glycerol, or PGA and excretes over 87% of total PL into culture fluids. In the absence of Ca2+, the organism fails to use PGA as a carbon source and produces very low levels of PL in media containing glucose or glycerol. Of the small amount of PL produced by the bacterium in Ca(2+)-deficient media, over 78% was detected within the cells, indicating that Ca2+ is critical not only for the production but also for the secretion of PL. The pel gene, encoding an alkaline PL (pI 10.0, Mr 41,000) was cloned and located on the overlapping region of a 4.3-kb SalI and a 7.1-kb EcoRI fragment. The 7.1-kb EcoRI fragment appears to contain a promoter for pel gene expression. A 1.7-kb SalI-XhoI subfragment of the 4.3-kb SalI fragment was cloned into pUC18 to give pROTM2. Escherichia coli cells carrying pROTM2 produce 50 to 100 times more PL than do cells carrying other pectolytic constructs. Production of PL by E. coli (pROTM2) was not affected by carbon sources or by Ca2+. The pI and Mr of PL from E. coli corresponded to values for its counterpart from P. fluorescens. A 0.7-kb BglII-ClaI fragment encoding the pel structural sequence was used to detect pel homologs in various species of fluorescent pseudomonads. Homologous sequences were observed in 10 of 11 strains of P. fluorescens, P. viridiflava, and P. putida. The pel gene in fluorescent pseudomonads is well conserved and may exist and remain repressed in certain strains or species which exhibit nonpectolytic phenotypes under laboratory conditions.

Full text

PDF
4386

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balbás P., Soberón X., Merino E., Zurita M., Lomeli H., Valle F., Flores N., Bolivar F. Plasmid vector pBR322 and its special-purpose derivatives--a review. Gene. 1986;50(1-3):3–40. doi: 10.1016/0378-1119(86)90307-0. [DOI] [PubMed] [Google Scholar]
  2. Beveridge T. J., Murray R. G. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1502–1518. doi: 10.1128/jb.127.3.1502-1518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billing E. Pseudomonas viridiflava (Burkholder, 1930; Clara 1934). J Appl Bacteriol. 1970 Sep;33(3):492–500. doi: 10.1111/j.1365-2672.1970.tb02225.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Chatterjee A. K., Buchanan G. E., Behrens M. K., Starr M. P. Synthesis and excretion of polygalacturonic acid trans-eliminase in Erwinia, Yersinia, and Klebsiella species. Can J Microbiol. 1979 Jan;25(1):94–102. doi: 10.1139/m79-014. [DOI] [PubMed] [Google Scholar]
  6. Crouse G. F., Frischauf A., Lehrach H. An integrated and simplified approach to cloning into plasmids and single-stranded phages. Methods Enzymol. 1983;101:78–89. doi: 10.1016/0076-6879(83)01006-x. [DOI] [PubMed] [Google Scholar]
  7. Dean R. A., Timberlake W. E. Regulation of the Aspergillus nidulans pectate lyase gene (pelA). Plant Cell. 1989 Mar;1(3):275–284. doi: 10.1105/tpc.1.3.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuchs A. The trans-eliminative breakdown of Na-polygalacturonate by Pseudomonas fluorescens. Antonie Van Leeuwenhoek. 1965;31(3):323–340. doi: 10.1007/BF02045912. [DOI] [PubMed] [Google Scholar]
  9. Holloway B. W., Morgan A. F. Genome organization in Pseudomonas. Annu Rev Microbiol. 1986;40:79–105. doi: 10.1146/annurev.mi.40.100186.000455. [DOI] [PubMed] [Google Scholar]
  10. Ji J., Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. Molecular cloning of the outJ gene involved in pectate lyase secretion by Erwinia chrysanthemi. Mol Microbiol. 1989 Mar;3(3):285–293. doi: 10.1111/j.1365-2958.1989.tb00173.x. [DOI] [PubMed] [Google Scholar]
  11. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kojima M., Suda S., Hotta S., Hamada K. Induction of pleomorphy and calcium ion deficiency in Lactobacillus bifidus. J Bacteriol. 1970 Apr;102(1):217–220. doi: 10.1128/jb.102.1.217-220.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konno H., Yamaya T., Yamasaki Y., Matsumoto H. Pectic polysaccharide breakdown of cell walls in cucumber roots grown with calcium starvation. Plant Physiol. 1984 Nov;76(3):633–637. doi: 10.1104/pp.76.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lelliott R. A., Billing E., Hayward A. C. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol. 1966 Dec;29(3):470–489. doi: 10.1111/j.1365-2672.1966.tb03499.x. [DOI] [PubMed] [Google Scholar]
  17. Liao C. H. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol. 1989 Jul;55(7):1677–1683. doi: 10.1128/aem.55.7.1677-1683.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manulis S., Kobayashi D. Y., Keen N. T. Molecular cloning and sequencing of a pectate lyase gene from Yersinia pseudotuberculosis. J Bacteriol. 1988 Apr;170(4):1825–1830. doi: 10.1128/jb.170.4.1825-1830.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McQueen D. A., Schottel J. L. Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J Bacteriol. 1987 May;169(5):1967–1971. doi: 10.1128/jb.169.5.1967-1971.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nasuno S., Starr M. P. Pectic enzymes of pseudomonas marginalis. Phytopathology. 1966 Dec;56(12):1414–1415. [PubMed] [Google Scholar]
  21. Reverchon S., Van Gijsegem F., Rouve M., Kotoujansky A., Robert-Baudouy J. Organization of a pectate lyase gene family in Erwinia chrysanthemi. Gene. 1986;49(2):215–224. doi: 10.1016/0378-1119(86)90282-9. [DOI] [PubMed] [Google Scholar]
  22. Ried J. L., Collmer A. Activity stain for rapid characterization of pectic enzymes in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. Appl Environ Microbiol. 1985 Sep;50(3):615–622. doi: 10.1128/aem.50.3.615-622.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schlemmer A. F., Ware C. F., Keen N. T. Purification and characterization of a pectin lyase produced by Pseudomonas fluorescens W51. J Bacteriol. 1987 Oct;169(10):4493–4498. doi: 10.1128/jb.169.10.4493-4498.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shepard H. M., Polisky B. Measurement of Plasmid copy number. Methods Enzymol. 1979;68:503–513. doi: 10.1016/0076-6879(79)68039-4. [DOI] [PubMed] [Google Scholar]
  25. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  26. Starr M. P., Chatterjee A. K., Starr P. B., Buchanan G. E. Enzymatic degradation of polygalacturonic acid by Yersinia and Klebsiella species in relation to clinical laboratory procedures. J Clin Microbiol. 1977 Oct;6(4):379–386. doi: 10.1128/jcm.6.4.379-386.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Verdlov E. D., Monastyrskaya G. S., Guskova L. I., Levitan T. L., Sheichenko V. I., Budowsky E. I. Modification of cytidine residues with a bisulfite-O-methylhydroxylamine mixture. Biochim Biophys Acta. 1974 Mar 8;340(2):153–165. [PubMed] [Google Scholar]
  28. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]
  29. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  30. Zucker M., Hankin L. Inducible pectate lyase synthesis and phytopathogenicity of Pseudomonas fluorescens. Can J Microbiol. 1971 Oct;17(10):1313–1318. doi: 10.1139/m71-210. [DOI] [PubMed] [Google Scholar]
  31. Zucker M., Hankin L. Regulation of pectate lyase synthesis in Pseudomonas fluorescens and Erwinia carotovora. J Bacteriol. 1970 Oct;104(1):13–18. doi: 10.1128/jb.104.1.13-18.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES