Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jul;173(14):4454–4463. doi: 10.1128/jb.173.14.4454-4463.1991

Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus.

A Raibaud 1, M Zalacain 1, T G Holt 1, R Tizard 1, C J Thompson 1
PMCID: PMC208109  PMID: 2066341

Abstract

Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide identity, 31% amino acid identity), as well as to GrsT, a protein encoded by a gene located adjacent to gramicidin S synthetase in Bacillus brevis, and to vertebrate (mallard duck and rat) thioesterases. The amino acid sequence and hydrophobicity profile of ORF3 indicated that it was related to a family of membrane transport proteins. It was strikingly similar to the citrate uptake protein encoded by the transposon Tn3411.

Full text

PDF
4454

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albright L. M., Huala E., Ausubel F. M. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet. 1989;23:311–336. doi: 10.1146/annurev.ge.23.120189.001523. [DOI] [PubMed] [Google Scholar]
  2. Anzai H., Murakami T., Imai S., Satoh A., Nagaoka K., Thompson C. J. Transcriptional regulation of bialaphos biosynthesis in Streptomyces hygroscopicus. J Bacteriol. 1987 Aug;169(8):3482–3488. doi: 10.1128/jb.169.8.3482-3488.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aricó B., Miller J. F., Roy C., Stibitz S., Monack D., Falkow S., Gross R., Rappuoli R. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6671–6675. doi: 10.1073/pnas.86.17.6671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayer E., Gugel K. H., Hägele K., Hagenmaier H., Jessipow S., König W. A., Zähner H. Stoffwechselprodukte von Mikroorganismen. 98. Phosphinothricin und Phosphinothricyl-Alanyl-Alanin. Helv Chim Acta. 1972 Jan 31;55(1):224–239. doi: 10.1002/hlca.19720550126. [DOI] [PubMed] [Google Scholar]
  5. Bibb M. J., Biró S., Motamedi H., Collins J. F., Hutchinson C. R. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 1989 Sep;8(9):2727–2736. doi: 10.1002/j.1460-2075.1989.tb08414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buttner M. J. RNA polymerase heterogeneity in Streptomyces coelicolor A3(2). Mol Microbiol. 1989 Nov;3(11):1653–1659. doi: 10.1111/j.1365-2958.1989.tb00151.x. [DOI] [PubMed] [Google Scholar]
  7. Buttner M. J., Smith A. M., Bibb M. J. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Cell. 1988 Feb 26;52(4):599–607. doi: 10.1016/0092-8674(88)90472-2. [DOI] [PubMed] [Google Scholar]
  8. Cairns B. R., Collard M. W., Landfear S. M. Developmentally regulated gene from Leishmania encodes a putative membrane transport protein. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7682–7686. doi: 10.1073/pnas.86.20.7682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chater K. F. Multilevel regulation of Streptomyces differentiation. Trends Genet. 1989 Nov;5(11):372–377. doi: 10.1016/0168-9525(89)90172-8. [DOI] [PubMed] [Google Scholar]
  10. Chirala S. S., Kasturi R., Pazirandeh M., Stolow D. T., Huang W. Y., Wakil S. J. A novel cDNA extension procedure. Isolation of chicken fatty acid synthase cDNA clones. J Biol Chem. 1989 Mar 5;264(7):3750–3757. [PubMed] [Google Scholar]
  11. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature. 1990 Nov 8;348(6297):176–178. doi: 10.1038/348176a0. [DOI] [PubMed] [Google Scholar]
  12. Docherty A. J., Bodmer M. W., Angal S., Verger R., Riviere C., Lowe P. A., Lyons A., Emtage J. S., Harris T. J. Molecular cloning and nucleotide sequence of rat lingual lipase cDNA. Nucleic Acids Res. 1985 Mar 25;13(6):1891–1903. doi: 10.1093/nar/13.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fukumoto H., Seino S., Imura H., Seino Y., Eddy R. L., Fukushima Y., Byers M. G., Shows T. B., Bell G. I. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5434–5438. doi: 10.1073/pnas.85.15.5434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gross R., Aricò B., Rappuoli R. Families of bacterial signal-transducing proteins. Mol Microbiol. 1989 Nov;3(11):1661–1667. doi: 10.1111/j.1365-2958.1989.tb00152.x. [DOI] [PubMed] [Google Scholar]
  15. Hara O., Anzai H., Imai S., Kumada Y., Murakami T., Itoh R., Takano E., Satoh A., Nagaoka K. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: cloning and analysis of the genes involved in the alanylation step. J Antibiot (Tokyo) 1988 Apr;41(4):538–547. doi: 10.7164/antibiotics.41.538. [DOI] [PubMed] [Google Scholar]
  16. Hidaka T., Imai S., Hara O., Anzai H., Murakami T., Nagaoka K., Seto H. Carboxyphosphonoenolpyruvate phosphonomutase, a novel enzyme catalyzing C-P bond formation. J Bacteriol. 1990 Jun;172(6):3066–3072. doi: 10.1128/jb.172.6.3066-3072.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holm C., Kirchgessner T. G., Svenson K. L., Lusis A. J., Belfrage P., Schotz M. C. Nucleotide sequence of rat adipose hormone sensitive lipase cDNA. Nucleic Acids Res. 1988 Oct 25;16(20):9879–9879. doi: 10.1093/nar/16.20.9879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Imai S., Seto H., Sasaki T., Tsuruoka T., Ogawa H., Satoh A., Inouye S., Niida T., Otake N. Studies on the biosynthesis of bialaphos (SF-1293). 6. Production of N-acetyl-demethylphosphinothricin and N-acetylbialaphos by blocked mutants of Streptomyces hygroscopicus SF-1293 and their roles in the biosynthesis of bialaphos. J Antibiot (Tokyo) 1985 May;38(5):687–690. doi: 10.7164/antibiotics.38.687. [DOI] [PubMed] [Google Scholar]
  19. Ishiguro N., Sato G. Nucleotide sequence of the gene determining plasmid-mediated citrate utilization. J Bacteriol. 1985 Dec;164(3):977–982. doi: 10.1128/jb.164.3.977-982.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jensen S. E., Wong A., Rollins M. J., Westlake D. W. Purification and partial characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. J Bacteriol. 1990 Dec;172(12):7269–7271. doi: 10.1128/jb.172.12.7269-7271.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kayano T., Fukumoto H., Eddy R. L., Fan Y. S., Byers M. G., Shows T. B., Bell G. I. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J Biol Chem. 1988 Oct 25;263(30):15245–15248. [PubMed] [Google Scholar]
  22. Kleinkauf H., von Döhren H. Biosynthesis of peptide antibiotics. Annu Rev Microbiol. 1987;41:259–289. doi: 10.1146/annurev.mi.41.100187.001355. [DOI] [PubMed] [Google Scholar]
  23. Krätzschmar J., Krause M., Marahiel M. A. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol. 1989 Oct;171(10):5422–5429. doi: 10.1128/jb.171.10.5422-5429.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumada Y., Anzai H., Takano E., Murakami T., Hara O., Itoh R., Imai S., Satoh A., Nagaoka K. The bialaphos resistance gene (bar) plays a role in both self-defense and bialaphos biosynthesis in Streptomyces hygroscopicus. J Antibiot (Tokyo) 1988 Dec;41(12):1838–1845. doi: 10.7164/antibiotics.41.1838. [DOI] [PubMed] [Google Scholar]
  25. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  26. Lawlor E. J., Baylis H. A., Chater K. F. Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev. 1987 Dec;1(10):1305–1310. doi: 10.1101/gad.1.10.1305. [DOI] [PubMed] [Google Scholar]
  27. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  28. Lipmann F. Attempts to map a process evolution of peptide biosynthesis. Science. 1971 Sep 3;173(4000):875–884. doi: 10.1126/science.173.4000.875. [DOI] [PubMed] [Google Scholar]
  29. Lynen F. On the structure of fatty acid synthetase of yeast. Eur J Biochem. 1980 Dec;112(3):431–442. doi: 10.1111/j.1432-1033.1980.tb06105.x. [DOI] [PubMed] [Google Scholar]
  30. Maiden M. C., Davis E. O., Baldwin S. A., Moore D. C., Henderson P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature. 1987 Feb 12;325(6105):641–643. doi: 10.1038/325641a0. [DOI] [PubMed] [Google Scholar]
  31. Maiden M. C., Jones-Mortimer M. C., Henderson P. J. The cloning, DNA sequence, and overexpression of the gene araE coding for arabinose-proton symport in Escherichia coli K12. J Biol Chem. 1988 Jun 15;263(17):8003–8010. [PubMed] [Google Scholar]
  32. Murakami T., Holt T. G., Thompson C. J. Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol. 1989 Mar;171(3):1459–1466. doi: 10.1128/jb.171.3.1459-1466.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ogawa H., Imai S., Satoh A., Kojima M. An improved method for the preparation of Streptomycetes and Micromonospora protoplasts. J Antibiot (Tokyo) 1983 Feb;36(2):184–186. doi: 10.7164/antibiotics.36.184. [DOI] [PubMed] [Google Scholar]
  34. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Poulose A. J., Rogers L., Cheesbrough T. M., Kolattukudy P. E. Cloning and sequencing of the cDNA for S-acyl fatty acid synthase thioesterase from the uropygial gland of mallard duck. J Biol Chem. 1985 Dec 15;260(29):15953–15958. [PubMed] [Google Scholar]
  36. Reddy P. G., Allon R., Mevarech M., Mendelovitz S., Sato Y., Gutnick D. L. Cloning and expression in Escherichia coli of an esterase-coding gene from the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1. Gene. 1989 Mar 15;76(1):145–152. doi: 10.1016/0378-1119(89)90016-4. [DOI] [PubMed] [Google Scholar]
  37. Safford R., de Silva J., Lucas C., Windust J. H., Shedden J., James C. M., Sidebottom C. M., Slabas A. R., Tombs M. P., Hughes S. G. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase. Biochemistry. 1987 Mar 10;26(5):1358–1364. doi: 10.1021/bi00379a023. [DOI] [PubMed] [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sasatsu M., Misra T. K., Chu L., Laddaga R., Silver S. Cloning and DNA sequence of a plasmid-determined citrate utilization system in Escherichia coli. J Bacteriol. 1985 Dec;164(3):983–993. doi: 10.1128/jb.164.3.983-993.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schweizer M., Roberts L. M., Höltke H. J., Takabayashi K., Höllerer E., Hoffmann B., Müller G., Köttig H., Schweizer E. The pentafunctional FAS1 gene of yeast: its nucleotide sequence and order of the catalytic domains. Mol Gen Genet. 1986 Jun;203(3):479–486. doi: 10.1007/BF00422073. [DOI] [PubMed] [Google Scholar]
  41. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  43. Smith D. J., Earl A. J., Turner G. The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J. 1990 Sep;9(9):2743–2750. doi: 10.1002/j.1460-2075.1990.tb07461.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Staden R. Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):521–538. doi: 10.1093/nar/12.1part2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stock J. B., Stock A. M., Mottonen J. M. Signal transduction in bacteria. Nature. 1990 Mar 29;344(6265):395–400. doi: 10.1038/344395a0. [DOI] [PubMed] [Google Scholar]
  46. Thompson C. J., Movva N. R., Tizard R., Crameri R., Davies J. E., Lauwereys M., Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 1987 Sep;6(9):2519–2523. doi: 10.1002/j.1460-2075.1987.tb02538.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Watson M. E. Compilation of published signal sequences. Nucleic Acids Res. 1984 Jul 11;12(13):5145–5164. doi: 10.1093/nar/12.13.5145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  49. van Liempt H., von Döhren H., Kleinkauf H. delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. The first enzyme in penicillin biosynthesis is a multifunctional peptide synthetase. J Biol Chem. 1989 Mar 5;264(7):3680–3684. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES