Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Aug;173(15):4902–4903. doi: 10.1128/jb.173.15.4902-4903.1991

Deamination of deoxycytidine nucleotides by the obligate intracytoplasmic bacterium Rickettsia prowazekii.

R R Speed 1, H H Winkler 1
PMCID: PMC208171  PMID: 1906875

Abstract

Thymidylate biosynthesis via the methylation of dUMP is required for DNA replication in Rickettsia prowazekii, an obligate intracytoplasmic bacterium. In theory, dUMP synthesis could occur either by the deamination of deoxycytidine nucleotides or by the reduction of uridine nucleotides. Accordingly, the incorporation of both radiolabeled cytidine and uridine into the thymidylate of R. prowazekii was examined. After DNA hydrolysis and high-performance liquid chromatography, it was determined that 85% of the rickettsial thymidylate was derived from cytidine and the remaining 15% was derived from uridine. These findings were supported by the identification of a dCTP deaminase activity in extracts of R. prowazekii. Extracts of R. prowazekii deaminated 1.7 +/- 0.3 nmol of dCTP/min/mg of protein (a value calculated to suffice for rickettsial growth), and no measurable activity was observed with dCMP as the substrate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anacker R. L., Pickens E. G., Lackman D. B. Details of the ultrastructure of Rickettsia prowazekii grown in the chick yolk sac. J Bacteriol. 1967 Jul;94(1):260–262. doi: 10.1128/jb.94.1.260-262.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D. R., Hopps H. E., Barile M. F., Bernheim B. C. Comparison of the ultrastructure of several rickettsiae, ornithosis virus, and Mycoplasma in tissue culture. J Bacteriol. 1965 Nov;90(5):1387–1404. doi: 10.1128/jb.90.5.1387-1404.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atkinson W. H., Winkler H. H. Permeability of Rickettsia prowazekii to NAD. J Bacteriol. 1989 Feb;171(2):761–766. doi: 10.1128/jb.171.2.761-766.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Atkinson W. H., Winkler H. H. Transport of AMP by Rickettsia prowazekii. J Bacteriol. 1985 Jan;161(1):32–38. doi: 10.1128/jb.161.1.32-38.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beck C. F., Eisenhardt A. R., Neuhard J. Deoxycytidine triphosphate deaminase of Salmonella typhimurium. Purification and characterization. J Biol Chem. 1975 Jan 25;250(2):609–616. [PubMed] [Google Scholar]
  6. Cai J., Speed R. R., Winkler H. H. Reduction of ribonucleotides by the obligate intracytoplasmic bacterium Rickettsia prowazekii. J Bacteriol. 1991 Feb;173(4):1471–1477. doi: 10.1128/jb.173.4.1471-1477.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duncan B. K., Diamond G. R., Bessman M. J. Regulation of enzymatic activity through subunit interaction. A possible example. J Biol Chem. 1972 Dec 25;247(24):8136–8138. [PubMed] [Google Scholar]
  8. Jadin J., Creemers J., Jadin J. M., Giroud P. Ultrastructure of Rickettsia prowazeki. Acta Virol. 1968 Jan;12(1):7–10. [PubMed] [Google Scholar]
  9. Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: identification and function in Salmonella typhimurium. J Bacteriol. 1971 Feb;105(2):657–665. doi: 10.1128/jb.105.2.657-665.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Donovan G. A., Edlin G., Fuchs J. A., Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: characterization of an Escherichia coli mutant deficient in the enzyme. J Bacteriol. 1971 Feb;105(2):666–672. doi: 10.1128/jb.105.2.666-672.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rossi M., Woodward D. O. Enzymes of deoxythymidine triphosphate biosynthesis in Neurospora crassa mitochondria. J Bacteriol. 1975 Feb;121(2):640–647. doi: 10.1128/jb.121.2.640-647.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith D. K., Winkler H. H. Characterization of a lysine-specific active transport system in Rickettsia prowazeki. J Bacteriol. 1977 Mar;129(3):1349–1355. doi: 10.1128/jb.129.3.1349-1355.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Speed R. R., Winkler H. H. Acquisition of polyamines by the obligate intracytoplasmic bacterium Rickettsia prowazekii. J Bacteriol. 1990 Oct;172(10):5690–5696. doi: 10.1128/jb.172.10.5690-5696.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Speed R. R., Winkler H. H. Acquisition of thymidylate by the obligate intracytoplasmic bacterium Rickettsia prowazekii. J Bacteriol. 1991 Mar;173(5):1704–1710. doi: 10.1128/jb.173.5.1704-1710.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tomita F., Takahashi I. A novel enzyme, dCTP deaminase, found in Bacillus subtilis infected with phage PBS I. Biochim Biophys Acta. 1969 Mar 18;179(1):18–27. doi: 10.1016/0005-2787(69)90117-8. [DOI] [PubMed] [Google Scholar]
  17. Winkler H. H., Daugherty R. M. Acquisition of glucose by Rickettsia prowazekii through the nucleotide intermediate uridine 5'-diphosphoglucose. J Bacteriol. 1986 Sep;167(3):805–808. doi: 10.1128/jb.167.3.805-808.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Winkler H. H., Daugherty R. M. Proline transport and metabolism in Rickettsia prowazekii. J Bacteriol. 1984 May;158(2):460–463. doi: 10.1128/jb.158.2.460-463.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Winkler H. H. Potassium permeability of Rickettsia prowazekii. J Bacteriol. 1984 Jan;157(1):197–201. doi: 10.1128/jb.157.1.197-201.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Winkler H. H. Rickettsial permeability. An ADP-ATP transport system. J Biol Chem. 1976 Jan 25;251(2):389–396. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES