Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Sep;173(17):5275–5279. doi: 10.1128/jb.173.17.5275-5279.1991

Isolation and characterization of a dinucleoside triphosphatase from Saccharomyces cerevisiae.

A Brevet 1, J Chen 1, M Fromant 1, S Blanquet 1, P Plateau 1
PMCID: PMC208236  PMID: 1653209

Abstract

An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).

Full text

PDF
5275

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. C., Jacobson M. K. Determination of diadenosine 5',5''',-P1,P4-tetraphosphate levels in cultured mammalian cells. Anal Biochem. 1984 Sep;141(2):451–460. doi: 10.1016/0003-2697(84)90070-8. [DOI] [PubMed] [Google Scholar]
  2. Barnes L. D., Culver C. A. Isolation and characterization of diadenosine 5',5"'-P1,P4-tetraphosphate pyrophosphohydrolase from Physarum polycephalum. Biochemistry. 1982 Nov 23;21(24):6123–6128. doi: 10.1021/bi00267a015. [DOI] [PubMed] [Google Scholar]
  3. Bartkiewicz M., Sierakowska H., Shugar D. Nucleotide pyrophosphatase from potato tubers. Purification and properties. Eur J Biochem. 1984 Sep 3;143(2):419–426. doi: 10.1111/j.1432-1033.1984.tb08389.x. [DOI] [PubMed] [Google Scholar]
  4. Brevet A., Plateau P., Best-Belpomme M., Blanquet S. Variation of Ap4A and other dinucleoside polyphosphates in stressed Drosophila cells. J Biol Chem. 1985 Dec 15;260(29):15566–15570. [PubMed] [Google Scholar]
  5. Costas M. J., Montero J. M., Cameselle J. C., Sillero M. A., Sillero A. Dinucleosidetriphosphatase from rat brain. Int J Biochem. 1984;16(7):757–762. doi: 10.1016/0020-711x(84)90186-1. [DOI] [PubMed] [Google Scholar]
  6. Costas M. J., Pinto R. M., Fernández A., Canales J., García-Agúndez J. A., Cameselle J. C. Purification to homogeneity of rat liver dinucleoside tetraphosphatase by affinity elution with adenosine 5'-tetraphosphate. J Biochem Biophys Methods. 1990 Jun;21(1):25–33. doi: 10.1016/0165-022x(90)90042-b. [DOI] [PubMed] [Google Scholar]
  7. Coste H., Brevet A., Plateau P., Blanquet S. Non-adenylylated bis(5'-nucleosidyl) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium. J Biol Chem. 1987 Sep 5;262(25):12096–12103. [PubMed] [Google Scholar]
  8. FINAMORE F. J., WARNER A. H. The occurrence of P1, P4-diguanosine 5'-tetraphosphate in brine shrimp eggs. J Biol Chem. 1963 Jan;238:344–348. [PubMed] [Google Scholar]
  9. Garrison P. N., Barnes L. D. Assay of adenosine 5'-P1-tetraphospho-P4-5"'-adenosine and adenosine 5'-P1-tetraphospho-P4-5"'-guanosine in Physarum polycephalum and other eukaryotes. An isocratic high-pressure liquid-chromatography method. Biochem J. 1984 Feb 1;217(3):805–811. doi: 10.1042/bj2170805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilmour S. J., Warner A. H. The presence of guanosine 5'-diphospho-5'-guanosine and guanosine 5'-triphospho-5'-adenosine in brine shrimp embryos. J Biol Chem. 1978 Jul 25;253(14):4960–4965. [PubMed] [Google Scholar]
  11. Guranowski A., Blanquet S. Phosphorolytic cleavage of diadenosine 5',5'''-P1,P4-tetraphosphate. Properties of homogeneous diadenosine 5',5'''-P1,P4-tetraphosphate alpha, beta-phosphorylase from Saccharomyces cerevisiae. J Biol Chem. 1985 Mar 25;260(6):3542–3547. [PubMed] [Google Scholar]
  12. Guranowski A., Jakubowski H., Holler E. Catabolism of diadenosine 5',5"'-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5',5"'-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. J Biol Chem. 1983 Dec 25;258(24):14784–14789. [PubMed] [Google Scholar]
  13. Hurtado C., Ruíz A., Sillero A., Sillero M. A. Specific magnesium-dependent diadenosine 5',5'''-P1,P3-triphosphate pyrophosphohydrolase in Escherichia coli. J Bacteriol. 1987 Apr;169(4):1718–1723. doi: 10.1128/jb.169.4.1718-1723.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakubowski H., Guranowski A. Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. J Biol Chem. 1983 Aug 25;258(16):9982–9989. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lee P. C., Bochner B. R., Ames B. N. Diadenosine 5',5"'-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem. 1983 Jun 10;258(11):6827–6834. [PubMed] [Google Scholar]
  17. Lobatón C. D., Vallejo C. G., Sillero A., Sillero M. A. Diguanosinetetraphosphatase from rat liver: Acitivity on diadenosine tetraphosphate and inhibition by adenosine tetraphosphate. Eur J Biochem. 1975 Jan 15;50(3):495–501. doi: 10.1111/j.1432-1033.1975.tb09888.x. [DOI] [PubMed] [Google Scholar]
  18. Léveque F., Blanchin-Roland S., Fayat G., Plateau P., Blanquet S. Design and characterization of Escherichia coli mutants devoid of Ap4N-hydrolase activity. J Mol Biol. 1990 Mar 20;212(2):319–329. doi: 10.1016/0022-2836(90)90127-8. [DOI] [PubMed] [Google Scholar]
  19. Lüthje J., Ogilvie A. Catabolism of Ap3A and Ap4A in human plasma. Purification and characterization of a glycoprotein complex with 5'-nucleotide phosphodiesterase activity. Eur J Biochem. 1985 May 15;149(1):119–127. doi: 10.1111/j.1432-1033.1985.tb08901.x. [DOI] [PubMed] [Google Scholar]
  20. Ogilvie A., Antl W. Diadenosine tetraphosphatase from human leukemia cells. Purification to homogeneity and partial characterization. J Biol Chem. 1983 Apr 10;258(7):4105–4109. [PubMed] [Google Scholar]
  21. Ogilvie A., Jakob P. Diadenosine 5',5"'-P1,P3-triphosphate in eukaryotic cells: identification and quantitation. Anal Biochem. 1983 Oct 15;134(2):382–392. doi: 10.1016/0003-2697(83)90313-5. [DOI] [PubMed] [Google Scholar]
  22. Plateau P., Fromant M., Brevet A., Gesquière A., Blanquet S. Catabolism of bis(5'-nucleosidyl) oligophosphates in Escherichia coli: metal requirements and substrate specificity of homogeneous diadenosine-5',5'''-P1,P4-tetraphosphate pyrophosphohydrolase. Biochemistry. 1985 Feb 12;24(4):914–922. doi: 10.1021/bi00325a016. [DOI] [PubMed] [Google Scholar]
  23. Plateau P., Fromant M., Kepes F., Blanquet S. Intracellular 5',5'-dinucleoside polyphosphate levels remain constant during the Escherichia coli cell cycle. J Bacteriol. 1987 Jan;169(1):419–422. doi: 10.1128/jb.169.1.419-422.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plateau P., Fromant M., Schmitter J. M., Blanquet S. Catabolism of bis(5'-nucleosidyl) tetraphosphates in Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):6892–6899. doi: 10.1128/jb.172.12.6892-6899.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Plateau P., Fromant M., Schmitter J. M., Buhler J. M., Blanquet S. Isolation, characterization, and inactivation of the APA1 gene encoding yeast diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase. J Bacteriol. 1989 Dec;171(12):6437–6445. doi: 10.1128/jb.171.12.6437-6445.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prescott M., Milne A. D., McLennan A. G. Characterization of the bis(5'-nucleosidyl) tetraphosphate pyrophosphohydrolase from encysted embryos of the brine shrimp Artemia. Biochem J. 1989 May 1;259(3):831–838. doi: 10.1042/bj2590831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robinson A. K., Barnes L. D. Three diadenosine 5',5''-P1,P4-tetraphosphate hydrolytic enzymes from Physarum polycephalum with differential effects by calcium: a specific dinucleoside polyphosphate pyrophosphohydrolase, a nucleotide pyrophosphatase, and a phosphodiesterase. Arch Biochem Biophys. 1986 Aug 1;248(2):502–515. doi: 10.1016/0003-9861(86)90503-5. [DOI] [PubMed] [Google Scholar]
  28. Rodriguez del Castillo A., Torres M., Delicado E. G., Miras-Portugal M. T. Subcellular distribution studies of diadenosine polyphosphates--Ap4A and Ap5A--in bovine adrenal medulla: presence in chromaffin granules. J Neurochem. 1988 Dec;51(6):1696–1703. doi: 10.1111/j.1471-4159.1988.tb01147.x. [DOI] [PubMed] [Google Scholar]
  29. Ruiz A., Hurtado C., Meireles Ribeiro J., Sillero A., Günther Sillero M. A. Hydrolysis of bis(5'-nucleosidyl) polyphosphates by Escherichia coli 5'-nucleotidase. J Bacteriol. 1989 Dec;171(12):6703–6709. doi: 10.1128/jb.171.12.6703-6709.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sillero M. A., Villalba R., Moreno A., Quintanilla M., Lobatón C. D., Sillero A. Dinucleosidetriphosphatase from rat liver. Purification and properties. Eur J Biochem. 1977 Jun 15;76(2):331–337. doi: 10.1111/j.1432-1033.1977.tb11600.x. [DOI] [PubMed] [Google Scholar]
  31. Silverman R. H., Atherly A. G. The search for guanosine tetraphosphate (ppGpp) and other unusual nucleotides in eucaryotes. Microbiol Rev. 1979 Mar;43(1):27–41. doi: 10.1128/mr.43.1.27-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sripati C. E., Groner Y., Warner J. R. Methylated, blocked 5' termini of yeast mRNA. J Biol Chem. 1976 May 25;251(10):2898–2904. [PubMed] [Google Scholar]
  33. Stevens A. An mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1150–1155. doi: 10.1016/0006-291x(80)90072-8. [DOI] [PubMed] [Google Scholar]
  34. Stevens A. mRNA-decapping enzyme from Saccharomyces cerevisiae: purification and unique specificity for long RNA chains. Mol Cell Biol. 1988 May;8(5):2005–2010. doi: 10.1128/mcb.8.5.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Warner A. H., Finamore F. J. Isolation, purification, and characterization of P1,P3-diguanosine 5'-triphosphate from brine shrimp eggs. Biochim Biophys Acta. 1965 Dec 9;108(4):525–530. doi: 10.1016/0005-2787(65)90049-3. [DOI] [PubMed] [Google Scholar]
  36. Zamecnik P. Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A): its role in cellular metabolism. Anal Biochem. 1983 Oct 1;134(1):1–10. doi: 10.1016/0003-2697(83)90255-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES