Abstract
Rhodospirillum centenum resembles typical nonsulfur photosynthetic bacteria in a number of respects, including its ability to grow either anaerobically as a phototroph or aerobically as a heterotroph. We demonstrate, however, that R. centenum is unusual in its ability to synthesize a functional photosynthetic apparatus regardless of the presence of molecular oxygen. Aerobically expressed photopigments were shown to be functionally active, as demonstrated by the ability of heterotrophically grown cells to grow photosynthetically, without a lag, when suddenly placed under anaerobic conditions. An R. centenum mutant that has acquired the ability to repress synthesis of photopigments in the presence of oxygen was also characterized. Both the wild type and the oxygen-repressed mutant of R. centenum were found to exhibit high light intensity repression of photopigment biosynthesis. The latter result suggests that R. centenum contains separate regulatory circuits for controlling synthesis of its photochemical apparatus by light intensity and oxygen.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
- Chory J., Donohue T. J., Varga A. R., Staehelin L. A., Kaplan S. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol. 1984 Aug;159(2):540–554. doi: 10.1128/jb.159.2.540-554.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drews G., Oelze J. Organization and differentiation of membranes of phototrophic bacteria. Adv Microb Physiol. 1981;22:1–92. doi: 10.1016/s0065-2911(08)60325-2. [DOI] [PubMed] [Google Scholar]
- Foster J. M., Redlinger T. E., Blankenship R. E., Fuller R. C. Oxygen regulation of development of the photosynthetic membrane system in Chloroflexus aurantiacus. J Bacteriol. 1986 Aug;167(2):655–659. doi: 10.1128/jb.167.2.655-659.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lascelles J., Wertlieb D. Mutant strains of Rhodopseudomonas spheroides which form photosynthetic pigments aerobically in the dark. Growth characteristics and enzymic activities. Biochim Biophys Acta. 1971 Mar 2;226(2):328–340. doi: 10.1016/0005-2728(71)90100-9. [DOI] [PubMed] [Google Scholar]
- Madigan M., Cox J. C., Gest H. Photopigments in Rhodopseudomonas capsulata cells grown anaerobically in darkness. J Bacteriol. 1982 Jun;150(3):1422–1429. doi: 10.1128/jb.150.3.1422-1429.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sojka G. A., Freeze H. H., Gest H. Quantitative estimation of bacteriochlorophyll in situ. Arch Biochem Biophys. 1970 Feb;136(2):578–580. doi: 10.1016/0003-9861(70)90231-6. [DOI] [PubMed] [Google Scholar]
- Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
- Yen H. C., Marrs B. Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol. 1976 May;126(2):619–629. doi: 10.1128/jb.126.2.619-629.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yildiz F. H., Gest H., Bauer C. E. Genetic analysis of photosynthesis in Rhodospirillum centenum. J Bacteriol. 1991 Jul;173(13):4163–4170. doi: 10.1128/jb.173.13.4163-4170.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young D. A., Bauer C. E., Williams J. C., Marrs B. L. Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet. 1989 Jul;218(1):1–12. doi: 10.1007/BF00330558. [DOI] [PubMed] [Google Scholar]