Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Sep;173(17):5546–5550. doi: 10.1128/jb.173.17.5546-5550.1991

Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii.

D Parke 1, F Rynne 1, A Glenn 1
PMCID: PMC208269  PMID: 1885531

Abstract

In members of the family Rhizobiaceae, many phenolic compounds are degraded by the protocatechuate branch of the beta-ketoadipate pathway. In this paper we describe a novel pattern of induction of protocatechuate (pca) genes in Rhizobium leguminosarum biovar trifolii. Isolation of pca mutant strains revealed that 4-hydroxybenzoate, quinate, and 4-coumarate are degraded via the protocatechuate pathway. At least three inducers govern catabolism of 4-hydroxybenzoate to succinyl coenzyme A and acetyl coenzyme A. The enzyme that catalyzes the initial step is induced by its substrate, whereas the catabolite beta-carboxy-cis,cis-muconate induces enzymes for the upper protocatechuate pathway, and beta-ketoadipate elicits expression of the enzyme for a subsequent step, beta-ketoadipate succinyl-coenzyme A transferase. Elucidation of the induction pattern relied in part on complementation of mutant Rhizobium strains by known subclones of Acinetobacter genes expressed off the lac promoter in a broad-host-range vector.

Full text

PDF
5546

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown C. M., Dilworth M. J. Ammonia assimilation by rhizobium cultures and bacteroids. J Gen Microbiol. 1975 Jan;86(1):39–48. doi: 10.1099/00221287-86-1-39. [DOI] [PubMed] [Google Scholar]
  2. De Vos G. F., Walker G. C., Signer E. R. Genetic manipulations in Rhizobium meliloti utilizing two new transposon Tn5 derivatives. Mol Gen Genet. 1986 Sep;204(3):485–491. doi: 10.1007/BF00331029. [DOI] [PubMed] [Google Scholar]
  3. Doten R. C., Gregg L. A., Ornston L. N. Influence of the catBCE sequence on the phenotypic reversion of a pcaE mutation in Acinetobacter calcoaceticus. J Bacteriol. 1987 Jul;169(7):3175–3180. doi: 10.1128/jb.169.7.3175-3180.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Doten R. C., Ngai K. L., Mitchell D. J., Ornston L. N. Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. J Bacteriol. 1987 Jul;169(7):3168–3174. doi: 10.1128/jb.169.7.3168-3174.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Durham D. R., Stirling L. A., Ornston L. N., Perry J. J. Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry. 1980 Jan 8;19(1):149–155. doi: 10.1021/bi00542a023. [DOI] [PubMed] [Google Scholar]
  6. Haas D., Holloway B. W. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976 Mar 30;144(3):243–251. doi: 10.1007/BF00341722. [DOI] [PubMed] [Google Scholar]
  7. Hartnett C., Neidle E. L., Ngai K. L., Ornston L. N. DNA sequences of genes encoding Acinetobacter calcoaceticus protocatechuate 3,4-dioxygenase: evidence indicating shuffling of genes and of DNA sequences within genes during their evolutionary divergence. J Bacteriol. 1990 Feb;172(2):956–966. doi: 10.1128/jb.172.2.956-966.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartnett G. B., Averhoff B., Ornston L. N. Selection of Acinetobacter calcoaceticus mutants deficient in the p-hydroxybenzoate hydroxylase gene (pobA), a member of a supraoperonic cluster. J Bacteriol. 1990 Oct;172(10):6160–6161. doi: 10.1128/jb.172.10.6160-6161.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holloway B. W. Genetics of Pseudomonas. Bacteriol Rev. 1969 Sep;33(3):419–443. doi: 10.1128/br.33.3.419-443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Juni E., Janik A. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol. 1969 Apr;98(1):281–288. doi: 10.1128/jb.98.1.281-288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Ornston L. N., Parke D. The evolution of induction mechanisms in bacteria: insights derived from the study of the beta-ketoadipate pathway. Curr Top Cell Regul. 1977;12:209–262. doi: 10.1016/b978-0-12-152812-6.50011-1. [DOI] [PubMed] [Google Scholar]
  14. Ornston M. K., Ornston L. N. The regulation of the -ketoadipate pathway in Pseudomonas acidovorans and Pseudomonas testosteroni. J Gen Microbiol. 1972 Dec;73(3):455–464. doi: 10.1099/00221287-73-3-455. [DOI] [PubMed] [Google Scholar]
  15. Parke D., Ornston L. N. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida. J Bacteriol. 1976 Apr;126(1):272–281. doi: 10.1128/jb.126.1.272-281.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stanier R. Y., Ornston L. N. The beta-ketoadipate pathway. Adv Microb Physiol. 1973;9(0):89–151. [PubMed] [Google Scholar]
  17. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES