Abstract
By cation-exchange column chromatography followed by gel filtration or hydroxylapatite column chromatography, ADP-ribosyltransferases (exoenzyme C3) were isolated from culture supernatants of Clostridium botulinum type C strains Stockholm (CST) and 6813 (C6813) and from type D strains South African (DSA) and 1873 (D1873), and their molecular properties were compared. The purified C3 enzymes were homogeneous in polyacrylamide gel electrophoresis. The C3 enzymes existed as single-chain polypeptides with molecular masses of 25.0 to 25.5 kDa and transferred ADP-riboses to the same substrates in rat brain membrane extract. The C3 enzymes could be roughly classified into two groups with respect to amino acid composition, amino-terminal sequence, and antigenicity. One group contains the C3 enzymes of strains C6813 and DSA, and the other contains those of strains CST and D1873. The specific activity of the C3 enzyme of strain C6813 was about 15 times higher than that of the C3 enzyme of strain CST. These results indicate that the classification of the C3 molecules differs from that of the neurotoxin molecules.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aktories K., Frevert J. ADP-ribosylation of a 21-24 kDa eukaryotic protein(s) by C3, a novel botulinum ADP-ribosyltransferase, is regulated by guanine nucleotide. Biochem J. 1987 Oct 15;247(2):363–368. doi: 10.1042/bj2470363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aktories K., Weller U., Chhatwal G. S. Clostridium botulinum type C produces a novel ADP-ribosyltransferase distinct from botulinum C2 toxin. FEBS Lett. 1987 Feb 9;212(1):109–113. doi: 10.1016/0014-5793(87)81566-1. [DOI] [PubMed] [Google Scholar]
- Didsbury J., Weber R. F., Bokoch G. M., Evans T., Snyderman R. rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem. 1989 Oct 5;264(28):16378–16382. [PubMed] [Google Scholar]
- Kikuchi A., Yamamoto K., Fujita T., Takai Y. ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J Biol Chem. 1988 Nov 5;263(31):16303–16308. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsuoka I., Sakuma H., Syuto B., Moriishi K., Kubo S., Kurihara K. ADP-ribosylation of 24-26-kDa GTP-binding proteins localized in neuronal and non-neuronal cells by botulinum neurotoxin D. J Biol Chem. 1989 Jan 15;264(2):706–712. [PubMed] [Google Scholar]
- Morii N., Sekine A., Ohashi Y., Nakao K., Imura H., Fujiwara M., Narumiya S. Purification and properties of the cytosolic substrate for botulinum ADP-ribosyltransferase. Identification as an Mr 22,000 guanine nucleotide-binding protein. J Biol Chem. 1988 Sep 5;263(25):12420–12426. [PubMed] [Google Scholar]
- Moriishi K., Syuto B., Kubo S., Oguma K. Molecular diversity of neurotoxins from Clostridium botulinum type D strains. Infect Immun. 1989 Sep;57(9):2886–2891. doi: 10.1128/iai.57.9.2886-2891.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriishi K., Syuto B., Oguma K., Saito M. Separation of toxic activity and ADP-ribosylation activity of botulinum neurotoxin D. J Biol Chem. 1990 Sep 25;265(27):16614–16616. [PubMed] [Google Scholar]
- Narumiya S., Sekine A., Fujiwara M. Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem. 1988 Nov 25;263(33):17255–17257. [PubMed] [Google Scholar]
- Nishiki T., Narumiya S., Morii N., Yamamoto M., Fujiwara M., Kamata Y., Sakaguchi G., Kozaki S. ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem Biophys Res Commun. 1990 Feb 28;167(1):265–272. doi: 10.1016/0006-291x(90)91760-p. [DOI] [PubMed] [Google Scholar]
- Ochanda J. O., Syuto B., Oguma K., Iida H., Kubo S. Comparison of antigenicity of toxins produced by Clostridium botulinum type C and D strains. Appl Environ Microbiol. 1984 Jun;47(6):1319–1322. doi: 10.1128/aem.47.6.1319-1322.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popoff M., Boquet P., Gill D. M., Eklund M. W. DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Res. 1990 Mar 11;18(5):1291–1291. doi: 10.1093/nar/18.5.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Syuto B., Kubo S. Isolation and molecular size of Clostridium botulinum type C toxin. Appl Environ Microbiol. 1977 Feb;33(2):400–405. doi: 10.1128/aem.33.2.400-405.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terajima J., Syuto B., Ochanda J. O., Kubo S. Purification and characterization of neurotoxin produced by Clostridium botulinum type C 6813. Infect Immun. 1985 May;48(2):312–317. doi: 10.1128/iai.48.2.312-317.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto K., Tanimoto T., Kim S., Kikuchi A., Takai Y. Small molecular weight GTP-binding proteins and signal transduction. Clin Chim Acta. 1989 Dec 15;185(3):347–355. doi: 10.1016/0009-8981(89)90225-8. [DOI] [PubMed] [Google Scholar]



