Abstract
Natural transformation, duplication insertion, and plasmid transformation in Deinococcus radiodurans, a bacterium that contains 4 to 10 chromosomes per cell, were studied. Duplication insertions were often heterozygous, with some chromosomes containing highly amplified insertions and others containing no insertions. Large amplified regions were apparently deleted by intrachromosomal recombination, generating as by-products extrachromosomal circles consisting of multiple tandem repeats of the amplified sequence. The circles were of heterogenous integer sizes, containing as many as 10 or more amplification units. Two strains that are defective in natural transformation and sensitive to DNA-damaging agents were further characterized. Both strains were defective in duplication insertion. While on strain was normal for plasmid transformation, the other was totally defective in this regard, suggesting that plasmid transfer in D. radiodurans may require recombinational functions.
Full text
PDF![6110](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/0ef9b45ba440/jbacter00109-0186.png)
![6111](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/806cbc36e64b/jbacter00109-0187.png)
![6112](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/c21845d371ab/jbacter00109-0188.png)
![6113](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/5647001842dd/jbacter00109-0189.png)
![6114](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/79b655337815/jbacter00109-0190.png)
![6115](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/20b4ac8c9733/jbacter00109-0191.png)
![6116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/2eea992b59cf/jbacter00109-0192.png)
![6117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/617f/208358/159acfe1f0bd/jbacter00109-0193.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alton N. K., Vapnek D. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature. 1979 Dec 20;282(5741):864–869. doi: 10.1038/282864a0. [DOI] [PubMed] [Google Scholar]
- Hansen M. T. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol. 1978 Apr;134(1):71–75. doi: 10.1128/jb.134.1.71-75.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jannière L., Niaudet B., Pierre E., Ehrlich S. D. Stable gene amplification in the chromosome of Bacillus subtilis. Gene. 1985;40(1):47–55. doi: 10.1016/0378-1119(85)90023-x. [DOI] [PubMed] [Google Scholar]
- Lennon E., Minton K. W. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1990 Jun;172(6):2955–2961. doi: 10.1128/jb.172.6.2955-2961.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison D. A., Lacks S. A., Guild W. R., Hageman J. M. Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J Bacteriol. 1983 Oct;156(1):281–290. doi: 10.1128/jb.156.1.281-290.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moseley B. E., Copland H. F. Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin-C, two of which have wild-type resistance to ultraviolet radiation. Mol Gen Genet. 1978 Apr 17;160(3):331–337. doi: 10.1007/BF00332977. [DOI] [PubMed] [Google Scholar]
- Moseley B. E., Copland H. J. Isolation and properties of a recombination-deficient mutant of Micrococcus radiodurans. J Bacteriol. 1975 Feb;121(2):422–428. doi: 10.1128/jb.121.2.422-428.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moseley B. E., Setlow J. K. Transformation in Micrococcus radiodurans and the ultraviolet sensitivity of its transforming DNA. Proc Natl Acad Sci U S A. 1968 Sep;61(1):176–183. doi: 10.1073/pnas.61.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson B. C., Rownd R. H. Homologous sequences other than insertion elements can serve as recombination sites in plasmid drug resistance gene amplification. J Bacteriol. 1983 Oct;156(1):177–185. doi: 10.1128/jb.156.1.177-185.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raina J. L., Macrina F. L. A competence specific inducible protein promotes in vivo recombination in Streptococcus sanguis. Mol Gen Genet. 1982;185(1):21–29. doi: 10.1007/BF00333785. [DOI] [PubMed] [Google Scholar]
- Smith M. D., Abrahamson R., Minton K. W. Shuttle plasmids constructed by the transformation of an Escherichia coli cloning vector into two Deinococcus radiodurans plasmids. Plasmid. 1989 Sep;22(2):132–142. doi: 10.1016/0147-619x(89)90022-x. [DOI] [PubMed] [Google Scholar]
- Smith M. D., Lennon E., McNeil L. B., Minton K. W. Duplication insertion of drug resistance determinants in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol. 1988 May;170(5):2126–2135. doi: 10.1128/jb.170.5.2126-2135.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. D., Masters C. I., Lennon E., McNeil L. B., Minton K. W. Gene expression in Deinococcus radiodurans. Gene. 1991 Feb 1;98(1):45–52. doi: 10.1016/0378-1119(91)90102-h. [DOI] [PubMed] [Google Scholar]
- Tempest P. R., Moseley B. E. Defective excision repair in a mutant of Micrococcus radiodurans hypermutable by some monofunctional alkylating agents. Mol Gen Genet. 1980;179(1):191–199. doi: 10.1007/BF00268463. [DOI] [PubMed] [Google Scholar]