Abstract
The fprA gene is immediately adjacent to the csgA gene (formerly known as spoC) of Myxococcus xanthus. Whereas the csgA gene has an essential role in cell interactions during the developmental cycle, the function of the fprA gene is unknown. Gene disruption was used to determine what affect a null mutation in this gene has on the phenotype of the cell. A csgA-fprA deletion and an fprA frameshift mutation were constructed in vitro in a cloned copy of this locus and then inserted into the M. xanthus chromosome to create a merodiploid with the wild-type and mutant alleles in tandem. The merodiploid was then allowed to segregate one of the two alleles along with the vector sequences in an effort to replace the wild-type allele with the mutant allele. All of the segregants had the wild-type allele, suggesting that a functional fprA gene is essential for vegetative growth. The fprA gene was placed under control of the lacZ transcriptional and translational signals and overexpressed in Escherichia coli, and the new host was examined for any phenotypic changes. A 27-kilodalton protein was observed in sodium dodecyl sulfate-polyacrylamide gels of total-cell protein as predicted from the DNA sequence of this gene. Overexpression of FprA caused the accumulation of a yellow pigment with spectral and redox properties similar to that of the flavins. The pigment cochromatographed with flavin mononucleotide by Silica Gel G thin-layer chromatography. Approximately two-thirds of the total cellular flavin was associated with soluble protein. The major soluble flavin-associated protein was purified on DEAE-Bio-Gel A and Phenyl-Sepharose CL-4B and by polyacrylamide gel electrophoresis. The amino acid composition of the purified protein was similar to that predicted from the DNA sequence of the FprA fusion protein. Apparently, overproduction of FprA (for flavin-associated protein A) in E. coli resulted in a large increase in flavin biosynthesis. Together, these results suggest that the fprA gene encodes a protein that is associated with flavin mononucleotide and has an essential function in M. xanthus.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacher A., Baur R., Eggers U., Harders H. D., Otto M. K., Schnepple H. Riboflavin synthases of Bacillus subtilis. Purification and properties. J Biol Chem. 1980 Jan 25;255(2):632–637. [PubMed] [Google Scholar]
- Burrows R. B., Brown G. M. Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin. J Bacteriol. 1978 Nov;136(2):657–667. doi: 10.1128/jb.136.2.657-667.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Foor F., Brown G. M. Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. J Biol Chem. 1975 May 10;250(9):3545–3551. [PubMed] [Google Scholar]
- Gill R. E., Cull M. G. Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J Bacteriol. 1986 Oct;168(1):341–347. doi: 10.1128/jb.168.1.341-347.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill R. E., Cull M. G., Fly S. Genetic identification and cloning of a gene required for developmental cell interactions in Myxococcus xanthus. J Bacteriol. 1988 Nov;170(11):5279–5288. doi: 10.1128/jb.170.11.5279-5288.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagen D. C., Bretscher A. P., Kaiser D. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev Biol. 1978 Jun;64(2):284–296. doi: 10.1016/0012-1606(78)90079-9. [DOI] [PubMed] [Google Scholar]
- Hagen T. J., Shimkets L. J. Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus. J Bacteriol. 1990 Jan;172(1):15–23. doi: 10.1128/jb.172.1.15-23.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J., Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938–2942. doi: 10.1073/pnas.74.7.2938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
- Kroos L., Kaiser D. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1987 Oct;1(8):840–854. doi: 10.1101/gad.1.8.840. [DOI] [PubMed] [Google Scholar]
- Kuspa A., Kroos L., Kaiser D. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol. 1986 Sep;117(1):267–276. doi: 10.1016/0012-1606(86)90369-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Le Van Q., Keller P. J., Bown D. H., Floss H. G., Bacher A. Biosynthesis of riboflavin in Bacillus subtilis: origin of the four-carbon moiety. J Bacteriol. 1985 Jun;162(3):1280–1284. doi: 10.1128/jb.162.3.1280-1284.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayhew S. G., Massey V. Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem. 1969 Feb 10;244(3):794–802. [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- Nielsen P., Neuberger G., Fujii I., Bown D. H., Keller P. J., Floss H. G., Bacher A. Biosynthesis of riboflavin. Enzymatic formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphates. J Biol Chem. 1986 Mar 15;261(8):3661–3669. [PubMed] [Google Scholar]
- Perumov D. A., Glazunov E. A., Gorinchuk G. F. Issledovanie operona biosinteza riboflavina u Bacillus subtiis. Soobshchenie XVII. Izuchenie reguliatornykh funktsii promezhutochnykh produktov i ikh proizvodnykh. Genetika. 1986 May;22(5):748–754. [PubMed] [Google Scholar]
- Rhie H. G., Shimkets L. J. Developmental bypass suppression of Myxococcus xanthus csgA mutations. J Bacteriol. 1989 Jun;171(6):3268–3276. doi: 10.1128/jb.171.6.3268-3276.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A., Hack A. M., Rupp W. D. Simple method for identification of plasmid-coded proteins. J Bacteriol. 1979 Jan;137(1):692–693. doi: 10.1128/jb.137.1.692-693.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shavlovskii G. M., Babiak L. Ia, Sibirnyi A. A., Logvinenko E. M. Geneticheskii kontrol' biosinteza riboflavina u drozhzhei Pichia guilliermondii. Obnaruzhenie novogo reguliatornogo gena RIN81. Genetika. 1985 Mar;21(3):368–374. [PubMed] [Google Scholar]
- Shimkets L. J., Asher S. J. Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus. Mol Gen Genet. 1988 Jan;211(1):63–71. doi: 10.1007/BF00338394. [DOI] [PubMed] [Google Scholar]
- Shimkets L. J. Control of morphogenesis in myxobacteria. Crit Rev Microbiol. 1987;14(3):195–227. doi: 10.3109/10408418709104439. [DOI] [PubMed] [Google Scholar]
- Shimkets L. J., Gill R. E., Kaiser D. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1406–1410. doi: 10.1073/pnas.80.5.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimkets L. J., Kaiser D. Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol. 1982 Oct;152(1):451–461. doi: 10.1128/jb.152.1.451-461.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]



