Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Jan;172(1):116–124. doi: 10.1128/jb.172.1.116-124.1990

The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria.

D A Stahl 1, J W Urbance 1
PMCID: PMC208408  PMID: 1688423

Abstract

Comparative 16S rRNA sequencing was used to infer the phylogenetic relationships among selected species of mycobacteria and related organisms. The phylogeny inferred reflects the traditional classification, with major branches of the phylogenetic tree in general correspondence to the four Runyon groups and with numerical classification analyses. All the mycobacterial species compared, with the exception of M. chitae, are closely related (average similarity values greater than 95%). The slow growers form a coherent line of descent, distinct from the rapid growers, within which the overt pathogens are clustered. The distant relationship between M. chitae and the remaining mycobacteria suggests that this organism is incorrectly classified with the mycobacteria. M. paratuberculosis 18 was indistinguishable from M. avium-M. intracellulare-M. scrofulaceum serovar 1 by this analysis.

Full text

PDF
116

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baess I. Deoxyribonucleic acid relatedness among species of rapidly growing mycobacteria. Acta Pathol Microbiol Immunol Scand B. 1982 Oct;90(5):371–375. doi: 10.1111/j.1699-0463.1982.tb00133.x. [DOI] [PubMed] [Google Scholar]
  2. Baess I. Deoxyribonucleic acid relatedness among species of slowly-growing mycobacteria. Acta Pathol Microbiol Scand B. 1979 Aug;87(4):221–226. doi: 10.1111/j.1699-0463.1979.tb02430.x. [DOI] [PubMed] [Google Scholar]
  3. Baess I., Magnusson M. Classification of Mycobacterium simiae by means of comparative reciprocal intradermal sensitin testing on guinea-pigs and deoxyribonucleic acid hybridization. Acta Pathol Microbiol Immunol Scand B. 1982 Apr;90(2):101–107. doi: 10.1111/j.1699-0463.1982.tb00089.x. [DOI] [PubMed] [Google Scholar]
  4. Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986 May 14;136(3):1136–1141. doi: 10.1016/0006-291x(86)90452-3. [DOI] [PubMed] [Google Scholar]
  5. Camphausen R. T., Jones R. L., Brennan P. J. Structure and relevance of the oligosaccharide hapten of Mycobacterium avium serotype 2. J Bacteriol. 1986 Nov;168(2):660–667. doi: 10.1128/jb.168.2.660-667.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins D. M., De Lisle G. W. DNA restriction endonuclease analysis of Mycobacterium bovis and other members of the tuberculosis complex. J Clin Microbiol. 1985 Apr;21(4):562–564. doi: 10.1128/jcm.21.4.562-564.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins D. M., de Lisle G. W. Restriction endonuclease analysis of various strains of Mycobacterium paratuberculosis isolated from cattle. Am J Vet Res. 1986 Oct;47(10):2226–2229. [PubMed] [Google Scholar]
  8. Collins M. D., Jones D. Reclassification of Corynebacterium pyogenes (Glage) in the genus Actinomyces, as Actinomyces pyogenes comb.nov. J Gen Microbiol. 1982 Apr;128(4):901–903. doi: 10.1099/00221287-128-4-901. [DOI] [PubMed] [Google Scholar]
  9. Elwood H. J., Olsen G. J., Sogin M. L. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol. 1985 Sep;2(5):399–410. doi: 10.1093/oxfordjournals.molbev.a040362. [DOI] [PubMed] [Google Scholar]
  10. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  11. Garcia M. J., Tabarés E. Separation of Mycobacterium gadium from other rapidly growing mycobacteria on the basis of DNA homology and restriction endonuclease analysis. J Gen Microbiol. 1986 Aug;132(8):2265–2269. doi: 10.1099/00221287-132-8-2265. [DOI] [PubMed] [Google Scholar]
  12. Gross W. M., Wayne L. G. Nucleic acid homology in the genus Mycobacterium. J Bacteriol. 1970 Nov;104(2):630–634. doi: 10.1128/jb.104.2.630-634.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hall R. M., Ratledge C. Mycobactins as chemotaxonomic characters for some rapidly growing mycobacteria. J Gen Microbiol. 1984 Aug;130(8):1883–1892. doi: 10.1099/00221287-130-8-1883. [DOI] [PubMed] [Google Scholar]
  14. Jenkins P. A. Lipid analysis for the identification of mycobacteria: an appraisal. Rev Infect Dis. 1981 Sep-Oct;3(5):862–866. doi: 10.1093/clinids/3.5.862. [DOI] [PubMed] [Google Scholar]
  15. Kimura M., Ota T. On the stochastic model for estimation of mutational distance between homologous proteins. J Mol Evol. 1972 Dec 29;2(1):87–90. doi: 10.1007/BF01653945. [DOI] [PubMed] [Google Scholar]
  16. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6955–6959. doi: 10.1073/pnas.82.20.6955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McIntyre G., Stanford J. L. Immunodiffusion analysis shows that Mycobacterium paratuberculosis and other mycobactin-dependent mycobacteria are variants of Mycobacterium avium. J Appl Bacteriol. 1986 Oct;61(4):295–298. doi: 10.1111/j.1365-2672.1986.tb04290.x. [DOI] [PubMed] [Google Scholar]
  18. Meissner G., Schröder K. H., Amadio G. E., Anz W., Chaparas S., Engel H. W., Jenkins P. A., Käppler W., Kleeberg H. H., Kubala E. A co-operative numerical analysis of nonscoto- and nonphotochromogenic slowly growing mycobacteria. J Gen Microbiol. 1974 Aug;83(2):207–235. doi: 10.1099/00221287-83-2-207. [DOI] [PubMed] [Google Scholar]
  19. Meissner P. S., Falkinham J. O., 3rd Plasmid DNA profiles as epidemiological markers for clinical and environmental isolates of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. J Infect Dis. 1986 Feb;153(2):325–331. doi: 10.1093/infdis/153.2.325. [DOI] [PubMed] [Google Scholar]
  20. Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Magnusson M. Mycolic acid patterns of some species of Mycobacterium. Arch Microbiol. 1984 Oct;139(2-3):225–231. doi: 10.1007/BF00402005. [DOI] [PubMed] [Google Scholar]
  21. Patel R., Kvach J. T., Mounts P. Isolation and restriction endonuclease analysis of mycobacterial DNA. J Gen Microbiol. 1986 Feb;132(2):541–551. doi: 10.1099/00221287-132-2-541. [DOI] [PubMed] [Google Scholar]
  22. RUNYON E. H. Anonymous mycobacteria in pulmonary disease. Med Clin North Am. 1959 Jan;43(1):273–290. doi: 10.1016/s0025-7125(16)34193-1. [DOI] [PubMed] [Google Scholar]
  23. Ridell M., Goodfellow M. Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J Gen Microbiol. 1983 Mar;129(3):599–611. doi: 10.1099/00221287-129-3-599. [DOI] [PubMed] [Google Scholar]
  24. Saxegaard F., Baess I., Jantzen E. Characterization of clinical isolates of Mycobacterium paratuberculosis by DNA-DNA hybridization and cellular fatty acid analysis. APMIS. 1988 Jun;96(6):497–502. [PubMed] [Google Scholar]
  25. Saxegaard F., Baess I. Relationship between Mycobacterium avium, Mycobacterium paratuberculosis and "wood pigeon mycobacteria". Determinations by DNA-DNA hybridization. APMIS. 1988 Jan;96(1):37–42. [PubMed] [Google Scholar]
  26. Stahl D. A., Flesher B., Mansfield H. R., Montgomery L. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol. 1988 May;54(5):1079–1084. doi: 10.1128/aem.54.5.1079-1084.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Suzuki Y., Nagata A., Ono Y., Yamada T. Complete nucleotide sequence of the 16S rRNA gene of Mycobacterium bovis BCG. J Bacteriol. 1988 Jun;170(6):2886–2889. doi: 10.1128/jb.170.6.2886-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Suzuki Y., Yoshinaga K., Ono Y., Nagata A., Yamada T. Organization of rRNA genes in Mycobacterium bovis BCG. J Bacteriol. 1987 Feb;169(2):839–843. doi: 10.1128/jb.169.2.839-843.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tsukamura M. Differentiation between Mycobacterium phlei and Mycobacterium thermoresistibile. Am Rev Respir Dis. 1971 Feb;103(2):280–282. doi: 10.1164/arrd.1971.103.2.280. [DOI] [PubMed] [Google Scholar]
  30. Tsukamura M., Ichiyama S. Numerical classification of rapidly growing nonphotochromogenic mycobacteria. Microbiol Immunol. 1986;30(9):863–882. doi: 10.1111/j.1348-0421.1986.tb03014.x. [DOI] [PubMed] [Google Scholar]
  31. Tsukamura M., Kita N., Otsuka W., Shimoide H. A study of the taxonomy of the Mycobacterium nonchromogenicum complex and report of six cases of lung infection due to Mycobacterium nonchromogenicum. Microbiol Immunol. 1983;27(3):219–236. doi: 10.1111/j.1348-0421.1983.tb03585.x. [DOI] [PubMed] [Google Scholar]
  32. Tuboly S. Studies on the antigenic structure of mycobacteria. I. Comparison of the antigenic structure of pathogenic and saprophytic mycobacteria. Acta Microbiol Acad Sci Hung. 1965;12(3):233–240. [PubMed] [Google Scholar]
  33. Wayne L. G., Diaz G. A. Identification of mycobacteria by specific precipitation of catalase with absorbed sera. J Clin Microbiol. 1985 May;21(5):721–725. doi: 10.1128/jcm.21.5.721-725.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wayne L. G. Mycobacterial taxonomy: a search for discontinuities. Ann Microbiol (Paris) 1978 Jan;129(1):13–27. [PubMed] [Google Scholar]
  35. Whipple D. L., Le Febvre R. B., Andrews R. E., Jr, Thiermann A. B. Isolation and analysis of restriction endonuclease digestive patterns of chromosomal DNA from Mycobacterium paratuberculosis and other Mycobacterium species. J Clin Microbiol. 1987 Aug;25(8):1511–1515. doi: 10.1128/jcm.25.8.1511-1515.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES