Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Mar;172(3):1516–1528. doi: 10.1128/jb.172.3.1516-1528.1990

Crystallization of R-form lipopolysaccharides from Salmonella minnesota and Escherichia coli.

N Kato 1, M Ohta 1, N Kido 1, H Ito 1, S Naito 1, T Hasegawa 1, T Watabe 1, K Sasaki 1
PMCID: PMC208628  PMID: 2407725

Abstract

Salmonella minnesota Re and Ra lipopolysaccharides (LPSs) and Escherichia coli K-12 LPS formed three-dimensional crystals, either hexagonal plates (preferential growth along the a axis) or solid columns (preferential growth along the c axis), when they were precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and incubated in 70% ethanol containing 250 mM MgCl2 at 4 degrees C for 10 days. Analyses of crystals suggested that they consist of hexagonal lattices with the a axis (a side of the lozenge as a unit cell on the basal plane) of 0.462 nm for all these three kinds of LPSs and the c axes (perpendicular to the basal plane) of 5.85, 8.47, and 8.75 nm for S. minnesota Re and Ra LPSs and E. coli K-12 LPS, respectively, and that hydrocarbon chains of the lipid A portion play the leading part in crystallization, whereas the hydrophilic part of the lipid A (the disaccharide backbone) and R core exhibit a disordered structure or are in a random orientation. The phenomenon of doubling of the a axis to 0.924 nm was observed with crystals of S. minnesota Re LPS when they were incubated in 70% ethanol for an additional 180 days, but not with crystals of S. minnesota Ra LPS or E. coli K-12 LPS. S. minnesota S-form LPS possessing the O-antigen-specific polysaccharide and S. minnesota free lipid A obtained by acid hydrolysis of Re LPS did not crystallize under the same experimental conditions.

Full text

PDF
1516

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano K., Ribi E., Cantrell J. L. Structural requirements of endotoxic glycolipid for antitumor and toxic activity. J Biochem. 1983 May;93(5):1391–1399. doi: 10.1093/oxfordjournals.jbchem.a134274. [DOI] [PubMed] [Google Scholar]
  2. Bangham A. D., Haydon D. A. Ultrastructure of membranes: biomolecular organization. Br Med Bull. 1968 May;24(2):124–126. doi: 10.1093/oxfordjournals.bmb.a070612. [DOI] [PubMed] [Google Scholar]
  3. Coughlin R. T., Tonsager S., McGroarty E. J. Quantitation of metal cations bound to membranes and extracted lipopolysaccharide of Escherichia coli. Biochemistry. 1983 Apr 12;22(8):2002–2007. doi: 10.1021/bi00277a041. [DOI] [PubMed] [Google Scholar]
  4. Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Emmerling G., Henning U., Gulik-Krzywicki T. Order-disorder conformation transition of hydrocarbon chains in lipopolysaccharide from Escherichia coli. Eur J Biochem. 1977 Sep;78(2):503–509. doi: 10.1111/j.1432-1033.1977.tb11763.x. [DOI] [PubMed] [Google Scholar]
  6. Formanek H. Possible orientation of the fatty acid chains in lipopolysaccharide. Z Naturforsch C. 1982 May-Jun;37(5-6):428–440. doi: 10.1515/znc-1982-5-613. [DOI] [PubMed] [Google Scholar]
  7. Galanos C., Freudenberg M. A., Lüderitz O., Rietschel E. T., Westphal O. Chemical, physicochemical and biological properties of bacterial lipopolysaccharides. Prog Clin Biol Res. 1979;29:321–332. [PubMed] [Google Scholar]
  8. Galanos C., Freudenberg M. A., Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5939–5943. doi: 10.1073/pnas.76.11.5939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galanos C., Lüderitz O., Freudenberg M., Brade L., Schade U., Rietschel E. T., Kusumoto S., Shiba T. Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur J Biochem. 1986 Oct 1;160(1):55–59. doi: 10.1111/j.1432-1033.1986.tb09939.x. [DOI] [PubMed] [Google Scholar]
  10. Galanos C., Lüderitz O., Rietschel E. T., Westphal O., Brade H., Brade L., Freudenberg M., Schade U., Imoto M., Yoshimura H. Synthetic and natural Escherichia coli free lipid A express identical endotoxic activities. Eur J Biochem. 1985 Apr 1;148(1):1–5. doi: 10.1111/j.1432-1033.1985.tb08798.x. [DOI] [PubMed] [Google Scholar]
  11. Galanos C., Lüderitz O., Westphal O. A new method for the extraction of R lipopolysaccharides. Eur J Biochem. 1969 Jun;9(2):245–249. doi: 10.1111/j.1432-1033.1969.tb00601.x. [DOI] [PubMed] [Google Scholar]
  12. Homma J. Y., Matsuura M., Kanegasaki S., Kawakubo Y., Kojima Y., Shibukawa N., Kumazawa Y., Yamamoto A., Tanamoto K., Yasuda T. Structural requirements of lipid A responsible for the functions: a study with chemically synthesized lipid A and its analogues. J Biochem. 1985 Aug;98(2):395–406. doi: 10.1093/oxfordjournals.jbchem.a135294. [DOI] [PubMed] [Google Scholar]
  13. Jansson P. E., Lindberg A. A., Lindberg B., Wollin R. Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur J Biochem. 1981 Apr;115(3):571–577. doi: 10.1111/j.1432-1033.1981.tb06241.x. [DOI] [PubMed] [Google Scholar]
  14. Kanegasaki S., Tanamoto K., Yasuda T., Homma J. Y., Matsuura M., Nakatsuka M., Kumazawa Y., Yamamoto A., Shiba T., Kusumoto S. Structure-activity relationship of lipid A: comparison of biological activities of natural and synthetic lipid A's with different fatty acid compositions. J Biochem. 1986 Apr;99(4):1203–1210. doi: 10.1093/oxfordjournals.jbchem.a135583. [DOI] [PubMed] [Google Scholar]
  15. Kato N., Kido N., Ohta M., Naito S. Comparative studies on adjuvanticity of Klebsiella O3 lipopolysaccharide and its lipid A and polysaccharide fractions. Immunology. 1985 Feb;54(2):317–324. [PMC free article] [PubMed] [Google Scholar]
  16. Kato N., Nakashima I., Ohta M. Adjuvant action of capsular polysaccharide of Klebsiella pneumoniae on antibody response. V. Further biological properties of the active substance. Jpn J Microbiol. 1976 Jun;20(3):173–181. doi: 10.1111/j.1348-0421.1976.tb00972.x. [DOI] [PubMed] [Google Scholar]
  17. Kato N., Ohta M., Kido N., Ito H., Naito S., Kuno T. Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella sp. J Bacteriol. 1985 Jun;162(3):1142–1150. doi: 10.1128/jb.162.3.1142-1150.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kato N., Ohta M., Kido N., Ito H., Naito S., Kuno T. Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella: relationship between lattice formation and uniform salt forms. Microbiol Immunol. 1985;29(11):1059–1068. doi: 10.1111/j.1348-0421.1985.tb00896.x. [DOI] [PubMed] [Google Scholar]
  19. Kato N., Ohta M., Kido N., Ito H., Naito S., Kuno T. In vitro hexagonal assembly of lipopolysaccharide of Escherichia coli K-12. Microbiol Immunol. 1986;30(11):1105–1113. doi: 10.1111/j.1348-0421.1986.tb03040.x. [DOI] [PubMed] [Google Scholar]
  20. Kotani S., Takada H., Takahashi I., Tsujimoto M., Ogawa T., Ikeda T., Harada K., Okamura H., Tamura T., Tanaka S. Low endotoxic activities of synthetic Salmonella-type lipid A with an additional acyloxyacyl group on the 2-amino group of beta (1-6) glucosamine disaccharide 1,4'-bisphosphate. Infect Immun. 1986 Jun;52(3):872–884. doi: 10.1128/iai.52.3.872-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kotani S., Takada H., Tsujimoto M., Ogawa T., Takahashi I., Ikeda T., Otsuka K., Shimauchi H., Kasai N., Mashimo J. Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect Immun. 1985 Jul;49(1):225–237. doi: 10.1128/iai.49.1.225-237.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  23. Labischinski H., Barnickel G., Bradaczek H., Naumann D., Rietschel E. T., Giesbrecht P. High state of order of isolated bacterial lipopolysaccharide and its possible contribution to the permeation barrier property of the outer membrane. J Bacteriol. 1985 Apr;162(1):9–20. doi: 10.1128/jb.162.1.9-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Labischinski H., Naumann D., Schultz C., Kusumoto S., Shiba T., Rietschel E. T., Giesbrecht P. Comparative X-ray and Fourier-transform-infrared investigations of conformational properties of bacterial and synthetic lipid A of Escherichia coli and Salmonella minnesota as well as partial structures and analogues thereof. Eur J Biochem. 1989 Feb 15;179(3):659–665. doi: 10.1111/j.1432-1033.1989.tb14598.x. [DOI] [PubMed] [Google Scholar]
  25. Mashimo J., Tanaka C., Arata S., Akiyama Y., Hata S., Hirayama T., Egawa K., Kasai N. Structural heterogeneity regarding local Shwartzman activity of lipid A. Microbiol Immunol. 1988;32(7):653–666. doi: 10.1111/j.1348-0421.1988.tb01427.x. [DOI] [PubMed] [Google Scholar]
  26. Naumann D., Schultz C., Born J., Labischinski H., Brandenburg K., von Busse G., Brade H., Seydel U. Investigations into the polymorphism of lipid A from lipopolysaccharides of Escherichia coli and Salmonella minnesota by Fourier-transform infrared spectroscopy. Eur J Biochem. 1987 Apr 1;164(1):159–169. doi: 10.1111/j.1432-1033.1987.tb11007.x. [DOI] [PubMed] [Google Scholar]
  27. Nikaido H. Biosynthesis of cell wall lipopolysaccharide in gram-negative enteric bacteria. Adv Enzymol Relat Areas Mol Biol. 1968;31:77–124. doi: 10.1002/9780470122761.ch3. [DOI] [PubMed] [Google Scholar]
  28. Nikaido H., Takeuchi Y., Ohnishi S. I., Nakae T. Outer membrane of Salmonella typhimurium. Electron spin resonance studies. Biochim Biophys Acta. 1977 Feb 14;465(1):152–164. doi: 10.1016/0005-2736(77)90363-7. [DOI] [PubMed] [Google Scholar]
  29. OSBORN M. J. STUDIES ON THE GRAM-NEGATIVE CELL WALL. I. EVIDENCE FOR THE ROLE OF 2-KETO- 3-DEOXYOCTONATE IN THE LIPOPOLYSACCHARIDE OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1963 Sep;50:499–506. doi: 10.1073/pnas.50.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pieroni R. E., Broderick E. J., Bundeally A., Levine L. A simple method for the quantitation of submicrogram amounts of bacterial endotoxin. Proc Soc Exp Biol Med. 1970 Mar;133(3):790–794. doi: 10.3181/00379727-133-34565. [DOI] [PubMed] [Google Scholar]
  31. Rickwood D., Birnie G. D. Metrizamide, a new density-gradient medium. FEBS Lett. 1975 Feb 1;50(2):102–110. doi: 10.1016/0014-5793(75)80467-4. [DOI] [PubMed] [Google Scholar]
  32. Rietschel E. T., Brade H., Brade L., Brandenburg K., Schade U., Seydel U., Zähringer U., Galanos C., Lüderitz O., Westphal O. Lipid A, the endotoxic center of bacterial lipopolysaccharides: relation of chemical structure to biological activity. Prog Clin Biol Res. 1987;231:25–53. [PubMed] [Google Scholar]
  33. Rivera M., Hancock R. E., Sawyer J. G., Haug A., McGroarty E. J. Enhanced binding of polycationic antibiotics to lipopolysaccharide from an aminoglycoside-supersusceptible, tolA mutant strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1988 May;32(5):649–655. doi: 10.1128/aac.32.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sonoda M., Takano M., Miyahara J., Kato H. Computed radiography utilizing scanning laser stimulated luminescence. Radiology. 1983 Sep;148(3):833–838. doi: 10.1148/radiology.148.3.6878707. [DOI] [PubMed] [Google Scholar]
  35. Tamaki S., Sato T., Matsuhashi M. Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K-12. J Bacteriol. 1971 Mar;105(3):968–975. doi: 10.1128/jb.105.3.968-975.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  37. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  38. Wawra H., Buschmann H., Formanek H., Formanek S. Strukturuntersuchung mit Röntgenbeugungsmethoden an Lipopolysacchariden von Salmonella minnesota Mutanten S SF 1111 und R 595 SF 1167. Z Naturforsch C. 1979 Mar-Apr;34(3-4):171–178. [PubMed] [Google Scholar]
  39. Wawra H., Buschmann H., Formanek H., Formanek S. Strukturuntersuchung mit Röntgenbeugungsmethoden an Lipopolysacchariden von Salmonella minnesota Mutanten S SF 1111 und R 595 SF 1167. Z Naturforsch C. 1979 Mar-Apr;34(3-4):171–178. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES