Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Apr;172(4):1732–1735. doi: 10.1128/jb.172.4.1732-1735.1990

Mutants of Streptococcus faecalis sensitive to alkaline pH lack Na(+)-ATPase.

Y Kakinuma 1, K Igarashi 1
PMCID: PMC208663  PMID: 2138604

Abstract

Alkali-sensitive mutants which grow at pH 7.5 but not at pH 9.5 in Na(+)-rich media were isolated from Streptococcus faecalis ATCC 9790. One of the mutants, designated Nak1, lacked activities of both Na(+)-stimulated ATPase and KtrII (active K+ uptake by sodium ATPase). These activities were restored in a spontaneous revertant designated Nak1R. Active sodium extrusion from Nak1 was observed at pH 7.0, which allows the cells to generate a proton potential, but not at pH 9.5, which reverses the proton potential, making it positive. Sodium extrusion at pH 7.0 was inhibited by addition of dicyclohexylcarbodiimide and protonophores. Even at pH 9.5, Nak1 did grow well in Na(+)-poor media. In Na(+)-rich media at pH 7.5, growth of Nak1 but not that of 9790 was severely inhibited by a protonophore. These results indicate that mutant Nak1 lacks sodium ATPase but contains a sodium/proton antiporter and that sodium ATPase is essential for the growth of this organism at high pH in Na(+)-rich conditions.

Full text

PDF
1732

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams A. The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilized enzyme. J Biol Chem. 1965 Sep;240(9):3675–3681. [PubMed] [Google Scholar]
  2. Dimroth P. A new sodium-transport system energized by the decarboxylation of oxaloacetate. FEBS Lett. 1980 Dec 29;122(2):234–236. doi: 10.1016/0014-5793(80)80446-7. [DOI] [PubMed] [Google Scholar]
  3. Harold F. M., Baarda J. R., Pavlasova E. Extrusion of sodium and hydrogen ions as the primary process in potassium ion accumulation by Streptococcus faecalis. J Bacteriol. 1970 Jan;101(1):152–159. doi: 10.1128/jb.101.1.152-159.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harold F. M., Kakinuma Y. Primary and secondary transport of cations in bacteria. Ann N Y Acad Sci. 1985;456:375–383. doi: 10.1111/j.1749-6632.1985.tb14888.x. [DOI] [PubMed] [Google Scholar]
  5. Harold F. M., Van Brunt J. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science. 1977 Jul 22;197(4301):372–373. doi: 10.1126/science.69317. [DOI] [PubMed] [Google Scholar]
  6. Heefner D. L., Harold F. M. ATP-driven sodium pump in Streptococcus faecalis. Proc Natl Acad Sci U S A. 1982 May;79(9):2798–2802. doi: 10.1073/pnas.79.9.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Heefner D. L., Harold F. M. ATP-linked sodium transport in Streptococcus faecalis. I. The sodium circulation. J Biol Chem. 1980 Dec 10;255(23):11396–11402. [PubMed] [Google Scholar]
  8. Heefner D. L., Kobayashi H., Harold F. M. ATP-linked sodium transport in Streptococcus faecalis. II. Energy coupling in everted membrane vesicles. J Biol Chem. 1980 Dec 10;255(23):11403–11407. [PubMed] [Google Scholar]
  9. Heefner D. L. Transport of H+, K+, Na+ and Ca++ in Streptococcus. Mol Cell Biochem. 1982 Apr 30;44(2):81–106. doi: 10.1007/BF00226893. [DOI] [PubMed] [Google Scholar]
  10. Kakinuma Y., Harold F. M. ATP-driven exchange of Na+ and K+ ions by Streptococcus faecalis. J Biol Chem. 1985 Feb 25;260(4):2086–2091. [PubMed] [Google Scholar]
  11. Kakinuma Y., Igarashi K. Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis. J Biol Chem. 1988 Oct 5;263(28):14166–14170. [PubMed] [Google Scholar]
  12. Kakinuma Y., Igarashi K. Sodium-translocating adenosine triphosphatase in Streptococcus faecalis. J Bioenerg Biomembr. 1989 Dec;21(6):679–692. doi: 10.1007/BF00762686. [DOI] [PubMed] [Google Scholar]
  13. Kakinuma Y. Lowering of cytoplasmic pH is essential for growth of Streptococcus faecalis at high pH. J Bacteriol. 1987 Sep;169(9):4403–4405. doi: 10.1128/jb.169.9.4403-4405.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kakinuma Y. Sodium/proton antiporter in Streptococcus faecalis. J Bacteriol. 1987 Sep;169(9):3886–3890. doi: 10.1128/jb.169.9.3886-3890.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kinoshita N., Unemoto T., Kobayashi H. Sodium-stimulated ATPase in Streptococcus faecalis. J Bacteriol. 1984 Jun;158(3):844–848. doi: 10.1128/jb.158.3.844-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krulwich T. A. Na+/H+ antiporters. Biochim Biophys Acta. 1983 Dec 30;726(4):245–264. doi: 10.1016/0304-4173(83)90011-3. [DOI] [PubMed] [Google Scholar]
  17. Tokuda H., Unemoto T. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem. 1982 Sep 10;257(17):10007–10014. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES