Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Apr;172(4):1798–1803. doi: 10.1128/jb.172.4.1798-1803.1990

High-molecular-weight forms of aminoacyl-tRNA synthetases and tRNA modification enzymes in Escherichia coli.

C L Harris 1
PMCID: PMC208671  PMID: 2180904

Abstract

The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA modification enzymes did not appear to exist in the same multienzymic complex. On the other hand, 4-thiouridine sulfurtransferase eluted with aminoacyl-tRNA synthetase activity on Bio-Gel A-5M, and both of these activities were cosedimented after further centrifugation of cell supernatants at 160,000 x g for 18 h. Despite this evidence for association of the sulfurtransferase with the synthetase complex, isoleucyl-tRNA synthetase and tRNA sulfurtransferase were totally resolved from each other by DEAE-Sephacel chromatography. Subsequent gel chromatography showed little change in their elution positions on agarose. Hence, either nonspecific aggregation occurred here, or the modification enzymes studied are not members of the aminoacyl-tRNA synthetase complex in E. coli. These findings do suggest that some bacterial tRNA modification enzymes are present in multiprotein complexes of high molecular weight.

Full text

PDF
1798

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrell J. W., Kaufman E. E., Lipsett M. N. The biosynthesis of 4-thiouridylate. Separation and purification of two enzymes in the transfer ribonucleic acid-sulfurtransferase system. J Biol Chem. 1971 Jan 25;246(2):294–301. [PubMed] [Google Scholar]
  2. Agris P. F., Playl T., Goldman L., Horton E., Woolverton D., Setzer D., Rodi C. Processing of tRNA is accomplished by a high-molecular-weight enzyme complex. Recent Results Cancer Res. 1983;84:237–254. doi: 10.1007/978-3-642-81947-6_18. [DOI] [PubMed] [Google Scholar]
  3. Ajitkumar P., Cherayil J. D. Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis, and function. Microbiol Rev. 1988 Mar;52(1):103–113. doi: 10.1128/mr.52.1.103-113.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
  6. Cirakoglu B., Waller J. P. Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm? Eur J Biochem. 1985 Jun 3;149(2):353–361. doi: 10.1111/j.1432-1033.1985.tb08933.x. [DOI] [PubMed] [Google Scholar]
  7. Dang C. V., Dang C. V. Multienzyme complex of aminoacyl-tRNA synthetases: an essence of being eukaryotic. Biochem J. 1986 Oct 15;239(2):249–255. doi: 10.1042/bj2390249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deutscher M. P. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol. 1984 Aug;99(2):373–377. doi: 10.1083/jcb.99.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Godar D. E., Godar D. E., Garcia V., Jacobo A., Aebi U., Yang D. C. Structural organization of the multienzyme complex of mammalian aminoacyl-tRNA synthetases. Biochemistry. 1988 Sep 6;27(18):6921–6928. doi: 10.1021/bi00418a038. [DOI] [PubMed] [Google Scholar]
  10. Hagervall T. G., Edmonds C. G., McCloskey J. A., Björk G. R. Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. J Biol Chem. 1987 Jun 25;262(18):8488–8495. [PubMed] [Google Scholar]
  11. Harris C. L. An aminoacyl-tRNA synthetase complex in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2718–2723. doi: 10.1128/jb.169.6.2718-2723.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris C. L., Lui L., Sakallah S., DeVore R. Cysteine starvation, isoleucyl-tRNAIle, and the regulation of the ilvGEDA operon of Escherichia coli. J Biol Chem. 1983 Jun 25;258(12):7676–7683. [PubMed] [Google Scholar]
  13. Harris C. L., Marin K., Stewart D. tRNA sulfurtransferase: a member of the aminoacyl-tRNA synthetase complex in rat liver. Biochem Biophys Res Commun. 1977 Dec 7;79(3):657–662. doi: 10.1016/0006-291x(77)91162-7. [DOI] [PubMed] [Google Scholar]
  14. Harris C. L., Titchener E. B., Cline A. L. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1322–1327. doi: 10.1128/jb.100.3.1322-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kellermann O., Brevet A., Tonetti H., Waller J. P. Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. 1. Extensive purification and characterization of the high-molecular-weight complex(es) of seven aminoacyl-tRNA synthetases from sheep liver. Eur J Biochem. 1979 Sep;99(3):541–550. doi: 10.1111/j.1432-1033.1979.tb13286.x. [DOI] [PubMed] [Google Scholar]
  16. Nass G., Stöffler G. Molecular weight distribution of the aminoacyl-tRNA-synthetases of Escherichia coli by gel filtration. Mol Gen Genet. 1967;100(4):378–382. doi: 10.1007/BF00334065. [DOI] [PubMed] [Google Scholar]
  17. Pendergast A. M., Traugh J. A. Alteration of aminoacyl-tRNA synthetase activities by phosphorylation with casein kinase I. J Biol Chem. 1985 Sep 25;260(21):11769–11774. [PubMed] [Google Scholar]
  18. Rao Y. S., Cherayil J. D. Separation of sulfur-containing components of transfer ribonucleic acid on Bio-Gel P-2 and Sephadex G-10 columns. Anal Biochem. 1974 Apr;58(2):376–381. doi: 10.1016/0003-2697(74)90205-x. [DOI] [PubMed] [Google Scholar]
  19. Richey B., Cayley D. S., Mossing M. C., Kolka C., Anderson C. F., Farrar T. C., Record M. T., Jr Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein-DNA interactions and gene expression. J Biol Chem. 1987 May 25;262(15):7157–7164. [PubMed] [Google Scholar]
  20. Schimmel P. R., Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. [DOI] [PubMed] [Google Scholar]
  21. Som K., Hardesty B. Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys. 1975 Feb;166(2):507–517. doi: 10.1016/0003-9861(75)90414-2. [DOI] [PubMed] [Google Scholar]
  22. Vennegoor C., Bloemendal H. Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem. 1972 Apr 24;26(4):462–473. doi: 10.1111/j.1432-1033.1972.tb01788.x. [DOI] [PubMed] [Google Scholar]
  23. Walker E. J., Treacy G. B., Jeffrey P. D. Molecular weights of mitochondrial and cytoplasmic aminoacyl-tRNA synthetases of beef liver and their complexes. Biochemistry. 1983 Apr 12;22(8):1934–1941. doi: 10.1021/bi00277a030. [DOI] [PubMed] [Google Scholar]
  24. Yang D. C., Garcia J. V., Johnson Y. D., Wahab S. Multienzyme complexes of mammalian aminoacyl-tRNA synthetases. Curr Top Cell Regul. 1985;26:325–335. doi: 10.1016/b978-0-12-152826-3.50031-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES