Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 May;172(5):2594–2600. doi: 10.1128/jb.172.5.2594-2600.1990

Cloning and expression of the Bacteroides fragilis TAL2480 neuraminidase gene, nanH, in Escherichia coli.

T A Russo 1, J S Thompson 1, V G Godoy 1, M H Malamy 1
PMCID: PMC208902  PMID: 2158974

Abstract

We have cloned the Bacteroides fragilis TAL2480 neuraminidase (NANase) structural gene, nanH, in Escherichia coli. This was accomplished by using the cloning shuttle vector pJST61 and a partial Sau3A library of TAL2480 chromosomal inserts created in E. coli. The library was mobilized into the NANase-deficient B. fragilis TM4000 derivative TC2. NANase-producing colonies were enriched by taking advantage of the inability of TC2, but not the wild-type of NANase+ revertant, to grow in vitro in fluid aspirated from the rat granuloma pouch. Plasmids pJST61-TCN1 and pJST61-TCN3, containing inserts of 9.1 and 4.5 kilobases (kb), respectively, were found in the TC2 derivatives that grew in the rat pouch medium. In B. fragilis, NANase production from the two plasmids was inducible by free N-acetylneuraminic acid or sialic acid-containing substrates, just as in the parental TAL2480 strain. However, when these plasmids were transferred back to E. coli, NANase activity was barely detectable. A 3.5-kb portion of the insert in pJST61-TCN3 was subcloned in pJST61 to give plasmid pJST61-SC3C; NANase was produced from this plasmid both in E. coli and in B. fragilis. In E. coli, NANase expression was under the control of the vector promoter lambda pR and was therefore completely abolished by the presence of a lambda prophage. In B. fragilis, NANase production was inducible by free N-acetylneuraminic acid or sialic acid-containing substrates. By using deletion analysis and Tn1000 mutagenesis, the NANase structural gene and control region that functions in B. fragilis were localized to a 1.5- to 2.0-kb region of the insert. A partial nucleotide sequence of the NANase-deficient Tn1000 insertion mutants allowed us to identify the nanH gene and deduce the amino acid sequence of a portion of the NANase protein. We identified five regions showing great similarity to the Asp boxes, -Ser-X-Asp-X-Gly-X-Thr-Trp-, of other bacterial and viral NANase proteins.

Full text

PDF
2594

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ada G. L., Jones P. D. The immune response to influenza infection. Curr Top Microbiol Immunol. 1986;128:1–54. doi: 10.1007/978-3-642-71272-2_1. [DOI] [PubMed] [Google Scholar]
  2. Berg J. O., Lindqvist L., Andersson G., Nord C. E. Neuraminidase in Bacteroides fragilis. Appl Environ Microbiol. 1983 Jul;46(1):75–80. doi: 10.1128/aem.46.1.75-80.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berry A. M., Paton J. C., Glare E. M., Hansman D., Catcheside D. E. Cloning and expression of the pneumococcal neuraminidase gene in Escherichia coli. Gene. 1988 Nov 30;71(2):299–305. doi: 10.1016/0378-1119(88)90046-7. [DOI] [PubMed] [Google Scholar]
  4. Clewell D. B., Helinski D. R. Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry. 1970 Oct 27;9(22):4428–4440. doi: 10.1021/bi00824a026. [DOI] [PubMed] [Google Scholar]
  5. Csete M., Lev B. I., Pereira M. E. An influenza virus model for Trypanosoma cruzi infection: interactive roles for neuraminidase and lectin. Curr Top Microbiol Immunol. 1985;117:153–165. doi: 10.1007/978-3-642-70538-0_8. [DOI] [PubMed] [Google Scholar]
  6. Cuchural G. J., Jr, Malamy M. H., Tally F. P. Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986 Nov;30(5):645–648. doi: 10.1128/aac.30.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalhoff A., Frank G., Luckhaus G. The granuloma pouch: an in vivo model for pharmacokinetic and chemotherapeutic investigations. I. Biochemical and histological characterization. Infection. 1982 Nov-Dec;10(6):354–360. doi: 10.1007/BF01642299. [DOI] [PubMed] [Google Scholar]
  8. Fraser Neuraminidase production by clostridia. J Med Microbiol. 1978 Aug;11(3):269–280. doi: 10.1099/00222615-11-3-269. [DOI] [PubMed] [Google Scholar]
  9. Guiney D. G., Hasegawa P., Davis C. E. Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance phenotypes. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7203–7206. doi: 10.1073/pnas.81.22.7203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hecht D. W., Thompson J. S., Malamy M. H. Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5340–5344. doi: 10.1073/pnas.86.14.5340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Manoil C., Beckwith J. TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8129–8133. doi: 10.1073/pnas.82.23.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moriyama T., Barksdale L. Neuraminidase of Corynebacterium diphtheriae. J Bacteriol. 1967 Nov;94(5):1565–1581. doi: 10.1128/jb.94.5.1565-1581.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Myers R. W., Lee R. T., Lee Y. C., Thomas G. H., Reynolds L. W., Uchida Y. The synthesis of 4-methylumbelliferyl alpha-ketoside of N-acetylneuraminic acid and its use in a fluorometric assay for neuraminidase. Anal Biochem. 1980 Jan 1;101(1):166–174. doi: 10.1016/0003-2697(80)90056-1. [DOI] [PubMed] [Google Scholar]
  14. Robillard N. J., Tally F. P., Malamy M. H. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli. J Bacteriol. 1985 Dec;164(3):1248–1255. doi: 10.1128/jb.164.3.1248-1255.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roggentin P., Rothe B., Kaper J. B., Galen J., Lawrisuk L., Vimr E. R., Schauer R. Conserved sequences in bacterial and viral sialidases. Glycoconj J. 1989;6(3):349–353. doi: 10.1007/BF01047853. [DOI] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Strauch K. L., Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1576–1580. doi: 10.1073/pnas.85.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thompson J. S., Malamy M. H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol. 1990 May;172(5):2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vimr E. R., Troy F. A. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol. 1985 Nov;164(2):845–853. doi: 10.1128/jb.164.2.845-853.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Warner T. G., O'Brien J. S. Synthesis of 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid and detection of skin fibroblast neuraminidase in normal humans and in sialidosis. Biochemistry. 1979 Jun 26;18(13):2783–2787. doi: 10.1021/bi00580a014. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES