Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Oct;173(20):6632–6634. doi: 10.1128/jb.173.20.6632-6634.1991

Lethal and mutagenic action of hydrogen peroxide on Haemophilus influenzae.

D A Sánchez-Rincón 1, E Cabrera-Juárez 1
PMCID: PMC209002  PMID: 1917884

Abstract

The lethal and mutagenic effects of H2O2 on wild-type Haemophilus influenzae Rd and on uvr1, uvr2, rec1, and rec2 mutant strains were studied. The first two mutants are sensitive to UV, and the second two are defective in recombination. Rd, urv1, and rec1 strains were more sensitive to the killing effect of H2O2 treatment than were uvr2 and rec2 strains. There were peaks of mutagenesis at two H2O2 concentrations over a range of 30 to 275 mM. Our results suggest a specific repair of H2O2 damage that is independent of the Uvr2 and Rec2 gene products. Sensitivity to the killing effect of H2O2 and to the lethal action of near-UV light were similar for Rd and uvr1 strains. This finding suggests that the mechanisms of killing by and repair of H2O2 damage may have some overlap with those of near-UV radiation.

Full text

PDF
6632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bol D. K., Yasbin R. E. Characterization of an inducible oxidative stress system in Bacillus subtilis. J Bacteriol. 1990 Jun;172(6):3503–3506. doi: 10.1128/jb.172.6.3503-3506.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CABRERA JUAREZ E. "BLACK LIGHT" INACTIVATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID FROM HAEMOPHILUS INFLUENZAE. J Bacteriol. 1964 Apr;87:771–778. doi: 10.1128/jb.87.4.771-778.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chapital-Blanno L., Cabrera-Juárez E. Nueva información genética en el ácido desoxirribonucleico por acción directa de la luz cercana al ultravioleta. Rev Latinoam Microbiol. 1985 Jul-Sep;27(3):267–274. [PubMed] [Google Scholar]
  4. Demple B., Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4;304(5925):466–468. doi: 10.1038/304466a0. [DOI] [PubMed] [Google Scholar]
  5. Eisenstark A. Bacterial genes involved in response to near-ultraviolet radiation. Adv Genet. 1989;26:99–147. doi: 10.1016/s0065-2660(08)60224-2. [DOI] [PubMed] [Google Scholar]
  6. GOODGAL S. H., HERRIOTT R. M. Studies on transformations of Hemophilus influenzae. I. Competence. J Gen Physiol. 1961 Jul;44:1201–1227. doi: 10.1085/jgp.44.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hagensee M. E., Moses R. E. Multiple pathways for repair of hydrogen peroxide-induced DNA damage in Escherichia coli. J Bacteriol. 1989 Feb;171(2):991–995. doi: 10.1128/jb.171.2.991-995.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartman P. S., Eisenstark A. Synergistic killing of Escherichia coli by near-UV radiation and hydrogen peroxide: distinction between recA-repairable and recA-nonrepairable damage. J Bacteriol. 1978 Feb;133(2):769–774. doi: 10.1128/jb.133.2.769-774.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartman P. S. In situ hydrogen peroxide production may account for a portion of NUV (300-400 nm) inactivation of stationary phase Escherichia coli. Photochem Photobiol. 1986 Jan;43(1):87–89. doi: 10.1111/j.1751-1097.1986.tb05595.x. [DOI] [PubMed] [Google Scholar]
  10. Imlay J. A., Linn S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol. 1987 Jul;169(7):2967–2976. doi: 10.1128/jb.169.7.2967-2976.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LeClerc J. E., Setlow J. K. Effects of combining ultraviolet repair and recombination mutations in Haemophilus influenzae. Nat New Biol. 1973 Feb 7;241(110):172–174. doi: 10.1038/newbio241172a0. [DOI] [PubMed] [Google Scholar]
  12. Macías-Martínez V., Cabrera-Juárez E. Letalidad de la luz policromática del ultravioleta cercano (325-400 nm) sobre Haemophilus influenzae Rd y sus mutantes uvr1 y rec1. Rev Latinoam Microbiol. 1988 Oct-Dec;30(4):375–379. [PubMed] [Google Scholar]
  13. McCormick J. P., Fischer J. R., Pachlatko J. P., Eisenstark A. Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide. Science. 1976 Feb 6;191(4226):468–469. doi: 10.1126/science.1108203. [DOI] [PubMed] [Google Scholar]
  14. Sak B. D., Eisenstark A., Touati D. Exonuclease III and the catalase hydroperoxidase II in Escherichia coli are both regulated by the katF gene product. Proc Natl Acad Sci U S A. 1989 May;86(9):3271–3275. doi: 10.1073/pnas.86.9.3271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sammartano L. J., Tuveson R. W., Davenport R. Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol. 1986 Oct;168(1):13–21. doi: 10.1128/jb.168.1.13-21.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Setlow J. K., Boling M. E., Beattie K. L., Kimball R. F. A complex of recombination and repair genes in Haemophilus influenzae. J Mol Biol. 1972 Jul 21;68(2):361–378. doi: 10.1016/0022-2836(72)90218-5. [DOI] [PubMed] [Google Scholar]
  17. Yoakum G., Eisenstark A. Toxicity of L-Tryptophan photoproduct on recombinationless (rec) mutants of Salmonella typhimurium. J Bacteriol. 1972 Oct;112(1):653–655. doi: 10.1128/jb.112.1.653-655.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES