Abstract
The pathways involved in the metabolism of ketoaldonic acids by Erwinia sp. strain ATCC 39140 have been investigated by use of a combination of enzyme assays and isolation of bacterial mutants. The catabolism of 2,5-diketo-D-gluconate (2,5-DKG) to gluconate can proceed by two separate NAD(P)H-dependent pathways. The first pathway involves the direct reduction of 2,5-DKG to 5-keto-D-gluconate, which is then reduced to gluconate. The second pathway involves the consecutive reduction of 2,5-DKG to 2-keto-L-gulonate and L-idonic acid, which is then oxidized to 5-keto-D-gluconate, which is then reduced to gluconate. Gluconate, which can also be produced by the NAD(P)H-dependent reduction of 2-keto-D-gluconate, is phosphorylated to 6-phosphogluconate and further metabolized through the pentose phosphate pathway. No evidence was found for the existence of the Entner-Doudoroff pathway in this strain.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allenza P., Lessie T. G. Pseudomonas cepacia mutants blocked in the Entner-Doudoroff pathway. J Bacteriol. 1982 Jun;150(3):1340–1347. doi: 10.1128/jb.150.3.1340-1347.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson S., Marks C. B., Lazarus R., Miller J., Stafford K., Seymour J., Light D., Rastetter W., Estell D. Production of 2-Keto-L-Gulonate, an Intermediate in L-Ascorbate Synthesis, by a Genetically Modified Erwinia herbicola. Science. 1985 Oct 11;230(4722):144–149. doi: 10.1126/science.230.4722.144. [DOI] [PubMed] [Google Scholar]
- Bochner B. R., Savageau M. A. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. doi: 10.1128/aem.33.2.434-444.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- DE LEY J., STOUTHAMER A. J. The mechanism and localization of hexonate metabolism in Acetobacter suboxydans and Acetobacter melanogenum. Biochim Biophys Acta. 1959 Jul;34:171–183. doi: 10.1016/0006-3002(59)90245-8. [DOI] [PubMed] [Google Scholar]
- DE LEY J., VANDAMME J. The metabolism of sodium 2-keto-D-gluconate by micro-organisms. J Gen Microbiol. 1955 Apr;12(2):162–171. doi: 10.1099/00221287-12-2-162. [DOI] [PubMed] [Google Scholar]
- Grindley J. F., Payton M. A., van de Pol H., Hardy K. G. Conversion of Glucose to 2-Keto-l-Gulonate, an Intermediate in l-Ascorbate Synthesis, by a Recombinant Strain of Erwinia citreus. Appl Environ Microbiol. 1988 Jul;54(7):1770–1775. doi: 10.1128/aem.54.7.1770-1775.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarus R. A., Seymour J. L. Determination of 2-keto-L-gulonic and other ketoaldonic and aldonic acids produced by ketogenic bacterial fermentation. Anal Biochem. 1986 Sep;157(2):360–366. doi: 10.1016/0003-2697(86)90638-x. [DOI] [PubMed] [Google Scholar]
- Lessie T. G., Phibbs P. V., Jr Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol. 1984;38:359–388. doi: 10.1146/annurev.mi.38.100184.002043. [DOI] [PubMed] [Google Scholar]
- Miller J. V., Estell D. A., Lazarus R. A. Purification and characterization of 2,5-diketo-D-gluconate reductase from Corynebacterium sp. J Biol Chem. 1987 Jul 5;262(19):9016–9020. [PubMed] [Google Scholar]
- Roberts B. K., Midgley M., Dawes E. A. The metabolism of 2-oxogluconate by Pseudomonas aeruginosa. J Gen Microbiol. 1973 Oct;78(2):319–329. doi: 10.1099/00221287-78-2-319. [DOI] [PubMed] [Google Scholar]
- Seymour J. L., Lazarus R. A. Native gel activity stain and preparative electrophoretic method for the detection and purification of pyridine nucleotide-linked dehydrogenases. Anal Biochem. 1989 May 1;178(2):243–247. doi: 10.1016/0003-2697(89)90632-5. [DOI] [PubMed] [Google Scholar]
- Susor W. A., Penhoet E., Rutter W. J. Fructose-diphosphate aldolase, pyruvate kinase, and pyridine nucleotide-linked activities after electrophoresis. Methods Enzymol. 1975;41:66–73. doi: 10.1016/s0076-6879(75)41017-5. [DOI] [PubMed] [Google Scholar]
- Veronese F. M., Boccù E., Fontana A. 6-Phosphogluconate dehydrogenase from Bacillus stearothermophilus. Methods Enzymol. 1982;89(Pt 500):282–291. doi: 10.1016/s0076-6879(82)89051-4. [DOI] [PubMed] [Google Scholar]
- Vicente M., Cánovas J. L. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J Bacteriol. 1973 Nov;116(2):908–914. doi: 10.1128/jb.116.2.908-914.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whiting P. H., Midgley M., Dawes E. A. The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol. 1976 Feb;92(2):304–310. doi: 10.1099/00221287-92-2-304. [DOI] [PubMed] [Google Scholar]