Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Jun;172(6):2855–2861. doi: 10.1128/jb.172.6.2855-2861.1990

Isolation and characterization of a new mutant of Saccharomyces cerevisiae with altered synthesis of 5-aminolevulinic acid.

E Carvajal 1, A D Panek 1, J R Mattoon 1
PMCID: PMC209081  PMID: 2188943

Abstract

A new gene, RHM1, required for normal production of 5-aminolevulinic acid by Saccharomyces cerevisiae, was identified by a novel screening method. Ethyl methanesulfonate treatment of a fluorescent porphyric strain bearing the pop3-1 mutation produced nonfluorescent or weakly fluorescent mutants with defects in early stages of tetrapyrrole biosynthesis. Class I mutants defective in synthesis of 5-aminolevulinate regained fluorescence when grown on medium supplemented with 5-aminolevulinate, whereas class II mutants altered in later biosynthetic steps did not. Among six recessive class I mutants, at least three complementation groups were found. One mutant contained an allele of HEM1, the structural gene for 5-aminolevulinate synthase, and two mutants contained alleles of the regulatory gene CYC4. The remaining mutants contained genes complementary to both hem1 and cyc4. Mutant strain DA3-RS3/68 contained mutant gene rhm1, which segregated independently of hem1 and cyc4 during meiosis. 5-Aminolevulinate synthase activity of the rhm1 mutant was 35 to 40% of that of the parental pop3-1 strain, whereas intracellular 5-aminolevulinate concentration was only 3 to 4% of the parental value. Transformation of an rhm1 strain with a multicopy plasmid containing the cloned HEM1 gene restored normal levels of 5-aminolevulinate synthase activity, but intracellular 5-aminolevulinate was increased to only 9 to 10% of normal. We concluded that RHM1 could control either targeting of 5-aminolevulinate synthase to the mitochondrial matrix or the activity of the enzyme in vivo.

Full text

PDF
2855

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrese M. R., Vojensky D., Mattoon J. R. Characterization of a cytochrome oxidase-deficient yeast mutant which accumulates porphyrins. Biochem Biophys Res Commun. 1982 Aug;107(3):848–855. doi: 10.1016/0006-291x(82)90600-3. [DOI] [PubMed] [Google Scholar]
  2. BURNHAM B. F., PIERCE W. S., WILLIAMS K. R., BOYER M. H., KIRBY C. K. delta-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J. 1963 Jun;87:462–472. doi: 10.1042/bj0870462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borralho L. M., Malamud D. R., Panek A. D., Tenan M. N., Oliveira D. E., Mattoon J. R. Parallel changes in catabolite repression of haem biosynthesis and cytochromes in repression-resistant mutants of Saccharomyces cerevisiae. J Gen Microbiol. 1989 May;135(5):1217–1227. doi: 10.1099/00221287-135-5-1217. [DOI] [PubMed] [Google Scholar]
  4. Borralho L. M., Panek A. D., Malamud D. R., Sanders H. K., Mattoon J. R. In situ assay for 5-aminolevulinate dehydratase and application to the study of a catabolite repression-resistant Saccharomyces cerevisiae mutant. J Bacteriol. 1983 Oct;156(1):141–147. doi: 10.1128/jb.156.1.141-147.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark-Walker G. D., Rittenberg B., Lascelles J. Cytochrome synthesis and its regulation in Spirillum itersonii. J Bacteriol. 1967 Nov;94(5):1648–1655. doi: 10.1128/jb.94.5.1648-1655.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gollub E. G., Liu K. P., Dayan J., Adlersberg M., Sprinson D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J Biol Chem. 1977 May 10;252(9):2846–2854. [PubMed] [Google Scholar]
  7. Grimal D., Labbe-Bois R. An enrichment method for heme-less mutants of Saccharomyces cerevisiae based on photodynamic properties of Zn-protoporphyrin. Mol Gen Genet. 1980;178(3):713–716. doi: 10.1007/BF00337883. [DOI] [PubMed] [Google Scholar]
  8. Hawthorne D C, Mortimer R K. Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. Genetics. 1960 Aug;45(8):1085–1110. doi: 10.1093/genetics/45.8.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jayaraman J., Padmanaban G., Malathi K., Sarma P. S. Haem synthesis during mitochondrogenesis in yeast. Biochem J. 1971 Feb;121(3):531–535. doi: 10.1042/bj1210531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keng T., Guarente L. Constitutive expression of the yeast HEM1 gene is actually a composite of activation and repression. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9113–9117. doi: 10.1073/pnas.84.24.9113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LASCELLES J. Synthesis of porphyrins by cell suspensions of Tetrahymena vorax: effect of members of the vitamin B group. Biochem J. 1957 May;66(1):65–72. doi: 10.1042/bj0660065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Labbe-Bois R., Volland C. Changes in the activities of the protoheme-synthesizing system during the growth of yeast under different conditions. Arch Biochem Biophys. 1977 Mar;179(2):565–577. doi: 10.1016/0003-9861(77)90145-x. [DOI] [PubMed] [Google Scholar]
  14. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  15. Mahler H. R., Lin C. C. Exogenous adenosine 3': 5'-monophosphate can release yeast from catabolite repression. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1039–1047. doi: 10.1016/0006-291x(78)91500-0. [DOI] [PubMed] [Google Scholar]
  16. Malamud D. R., Borralho L. M., Panek A. D., Mattoon J. R. Modulation of cytochrome biosynthesis in yeast by antimetabolite action of levulinic acid. J Bacteriol. 1979 Jun;138(3):799–804. doi: 10.1128/jb.138.3.799-804.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malamud D. R., Padrão G. R., Borralho L. M., Arrese M., Panek A. D., Mattoon J. R. Regulation of porphyrin biosynthesis in yeast. Level of delta-aminolevulinic acid in porphyrin mutants of Saccharomyces cerevisiae. Braz J Med Biol Res. 1983 Oct;16(3):203–213. [PubMed] [Google Scholar]
  18. RAABO E., TERKILDSEN T. C. On the enzymatic determination of blood glucose. Scand J Clin Lab Invest. 1960;12(4):402–407. doi: 10.3109/00365516009065404. [DOI] [PubMed] [Google Scholar]
  19. Rytka J., Bilinski T., Labbe-Bois R. Modified uroporphyrinogen decarboxylase activity in a yeast mutant which mimics porphyria cutanea tarda. Biochem J. 1984 Mar 1;218(2):405–413. doi: 10.1042/bj2180405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SHEMIN D., RUSSELL C. S., ABRAMSKY T. The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J Biol Chem. 1955 Aug;215(2):613–626. [PubMed] [Google Scholar]
  21. SHERMAN F. MUTANTS OF YEAST DEFICIENT IN CYTOCHROME C. Genetics. 1964 Jan;49:39–48. doi: 10.1093/genetics/49.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sanders H. K., Mied P. A., Briquet M., Hernandez-Rodriguez J., Gottal R. F., Mattoon J. R. Regulation of mitochondrial biogenesis: yeast mutants deficient in synthesis of delta-aminolevulinic acid. J Mol Biol. 1973 Oct 15;80(1):17–39. doi: 10.1016/0022-2836(73)90231-3. [DOI] [PubMed] [Google Scholar]
  23. Sinclair P. R., Granick S. Heme control on the synthesis of delta-aminolevulinic acid synthetase in cultured chick embryo liver cells. Ann N Y Acad Sci. 1975 Apr 15;244:509–520. doi: 10.1111/j.1749-6632.1975.tb41551.x. [DOI] [PubMed] [Google Scholar]
  24. Urban-Grimal D., Volland C., Garnier T., Dehoux P., Labbe-Bois R. The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. Eur J Biochem. 1986 May 2;156(3):511–519. doi: 10.1111/j.1432-1033.1986.tb09610.x. [DOI] [PubMed] [Google Scholar]
  25. Woods R. A., Sanders H. K., Briquet M., Foury F., Drysdale B. E., Mattoon J. R. Regulation of mitochondrial biogenesis: enzymatic changes in cytochrome-deficient yeast mutants requiring delta-aminolevulinic acid. J Biol Chem. 1975 Dec 10;250(23):9090–9098. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES