Abstract
Pure cultures of the symbiotic cyanobacterium-bryophyte association with Anthoceros punctatus were reconstituted by using Nostoc sp. strain UCD 7801 or its 3-(3,4-dichlorophenol)-1,1-dimethylurea (DCMU)-resistant mutant strain, UCD 218. The cultures were grown under high light intensity with CO2 as the sole carbon source and then incubated in the dark to deplete endogenous reductant pools before measurements of nitrogenase activities (acetylene reduction). High rates of light-dependent acetylene reduction were obtained both before starvation in the dark and after recovery from starvation, regardless of which of the two Nostoc strains was reconstituted in the association. Rates of acetylene reduction by symbiotic tissue with the wild-type Nostoc strain decreased 99 and 96% after 28 h of incubation in the dark and after reexposure to light in the presence of 5 microM DCMU, respectively. Supplementation of the medium with glucose restored nitrogenase activity in the dark to a rate that was 64% of the illuminated rate. In the light and in the presence of 5 microM DCMU, acetylene reduction could be restored to 91% of the uninhibited rate by the exogenous presence of various carbohydrates. The rate of acetylene reduction in the presence of DCMU was 34% of the uninhibited rate of tissue in association with the DCMU-resistant strain UCD 218. This result implies that photosynthates produced immediately by the cyanobacterium can supply at least one-third of the reductant required for nitrogenase activity on a short-term basis in the symbiotic association. However, high steady-state rates of nitrogenase activity by symbiotic Nostoc strains appear to depend on endogenous carbohydrate reserves, which are presumably supplied as photosynthate from both A. punctatus tissue and the Nostoc strain.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almon H., Böhme H. Components and activity of the photosynthetic electron transport system of intact heterocysts isolated from the blue-green alga Nostoc muscorum. Biochim Biophys Acta. 1980 Aug 5;592(1):113–120. doi: 10.1016/0005-2728(80)90118-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lockau W., Peterson R. B., Wolk C. P., Burris R. H. Modes of reduction of nitrogen in heterocysts isolated from Anabaena species. Biochim Biophys Acta. 1978 May 10;502(2):298–308. doi: 10.1016/0005-2728(78)90051-8. [DOI] [PubMed] [Google Scholar]
- Mattoo A. K., Pick U., Hoffman-Falk H., Edelman M. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1572–1576. doi: 10.1073/pnas.78.3.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neilson A., Rippka R., Kunisawa R. Heterocyst formation and nitrogenase synthesis in Anabaena sp. A kinetic study. Arch Mikrobiol. 1971;76(2):139–150. doi: 10.1007/BF00411788. [DOI] [PubMed] [Google Scholar]
- Peters G. A., Mayne B. C. The Azolla, Anabaena azollae Relationship: II. Localization of Nitrogenase Activity as Assayed by Acetylene Reduction. Plant Physiol. 1974 Jun;53(6):820–824. doi: 10.1104/pp.53.6.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson R. B., Burris R. H. Properties of heterocysts isolated with colloidal silica. Arch Microbiol. 1976 May 3;108(1):35–40. doi: 10.1007/BF00425090. [DOI] [PubMed] [Google Scholar]
- Privalle L. S. Effects of D-erythrose on nitrogenase activity in whole filaments of Anabaena sp. strain 7120. J Bacteriol. 1984 Nov;160(2):794–796. doi: 10.1128/jb.160.2.794-796.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray T. B., Mayne B. C., Toia R. E., Peters G. A. Azolla-Anabaena Relationship: VIII. Photosynthetic Characterization of the Association and Individual Partners. Plant Physiol. 1979 Nov;64(5):791–795. doi: 10.1104/pp.64.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray T. B., Peters G. A., Toia R. E., Mayne B. C. Azolla-Anabaena Relationships: VII. Distribution of Ammonia-assimilating Enzymes, Protein, and Chlorophyll between Host and Symbiont. Plant Physiol. 1978 Sep;62(3):463–467. doi: 10.1104/pp.62.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg N. A., Meeks J. C. Photosynthetic CO2 fixation and ribulose bisphosphate carboxylase/oxygenase activity of Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol. 1989 Nov;171(11):6227–6233. doi: 10.1128/jb.171.11.6227-6233.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
