Abstract
We compared the products of autolytic amidase-catalyzed wall degradation in vivo (in penicillin-induced lysis) and in vitro. Pneumococci labeled in their cell wall stem peptides by radioactive lysine were treated with penicillin, and the nature of wall degradation products released to the medium during lysis of the bacteria was determined. At early times of lysis (20% loss of wall label), virtually all the radioactive peptides released (greater than 94%) were of high molecular size and were still attached to glycan and teichoic acid. At times of more extensive bacterial lysis (56%), progressively larger and larger fractions of the released peptides became free, i.e., detached from glycan and teichoic acid. Analysis of the nondegraded residual wall material by high-resolution high-pressure liquid chromatography revealed that this in vivo-triggered autolysis did not involve selective hydrolysis of some of the chemically distinct stem peptides. Parallel in vitro experiments yielded completely different results. Purified pneumococcal cell walls labeled with radioactive lysine were treated in vitro with low concentrations of pure amidase, and the nature of wall degradation products released during limited hydrolysis and after more extensive degradation was determined. In sharp contrast to the in vivo experiments, the main products of in vitro hydrolysis were free peptides. After a short treatment with amidase (resulting in a 20% loss of label), the material released was enriched for the monomeric stem peptides. At all times of hydrolysis (including the time of extensive degradation), only a relatively small fraction of the released wall peptides was covalently attached to glycan and teichoic acid components (17% as compared with 40% in the intact cell wall). We propose that the in vivo-triggered amidase activity first attacks the amide bonds in some strategically located (or unprotected) stem peptides that hold large segments of cell wall material together. The observations indicate that the in vivo activity of the pneumococcal autolysin is under topographic constraints.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fischer H., Tomasz A. Peptidoglycan cross-linking and teichoic acid attachment in Streptococcus pneumoniae. J Bacteriol. 1985 Jul;163(1):46–54. doi: 10.1128/jb.163.1.46-54.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Chait B. T., Tomasz A. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem. 1987 Nov 15;262(32):15400–15405. [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Tomasz A. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J Bacteriol. 1987 Feb;169(2):447–453. doi: 10.1128/jb.169.2.447-453.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- García P., García E., Ronda C., Lopez R., Jiang R. Z., Tomasz A. Mutants of Streptococcus pneumoniae that contain a temperature-sensitive autolysin. J Gen Microbiol. 1986 May;132(5):1401–1405. doi: 10.1099/00221287-132-5-1401. [DOI] [PubMed] [Google Scholar]
- Giudicelli S., Tomasz A. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol. 1984 Jun;158(3):1188–1190. doi: 10.1128/jb.158.3.1188-1190.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard L. V., Gooder H. Specificity of the autolysin of Streptococcus (Diplococcus) pneumoniae. J Bacteriol. 1974 Feb;117(2):796–804. doi: 10.1128/jb.117.2.796-804.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höltje J. V., Tomasz A. Purification of the pneumococcal N-acetylmuramyl-L-alanine amidase to biochemical homogeneity. J Biol Chem. 1976 Jul 25;251(14):4199–4207. [PubMed] [Google Scholar]
- Höltje J. V., Tomasz A. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of Pneumococcus. J Biol Chem. 1975 Aug 10;250(15):6072–6076. [PubMed] [Google Scholar]
- Kitano K., Tuomanen E., Tomasz A. Transglycosylase and endopeptidase participate in the degradation of murein during autolysis of Escherichia coli. J Bacteriol. 1986 Sep;167(3):759–765. doi: 10.1128/jb.167.3.759-765.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosser J. L., Tomasz A. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem. 1970 Jan 25;245(2):287–298. [PubMed] [Google Scholar]
- Sanchez-Puelles J. M., Ronda C., Garcia J. L., Garcia P., Lopez R., Garcia E. Searching for autolysin functions. Characterization of a pneumococcal mutant deleted in the lytA gene. Eur J Biochem. 1986 Jul 15;158(2):289–293. doi: 10.1111/j.1432-1033.1986.tb09749.x. [DOI] [PubMed] [Google Scholar]
- Tomasz A. Biological consequences of the replacement of choline by ethanolamine in the cell wall of Pneumococcus: chanin formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci U S A. 1968 Jan;59(1):86–93. doi: 10.1073/pnas.59.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasz A., Westphal M., Briles E. B., Fletcher P. On the physiological functions of teichoic acids. J Supramol Struct. 1975;3(1):1–16. doi: 10.1002/jss.400030102. [DOI] [PubMed] [Google Scholar]
