Abstract
In vitro protein synthesis in Vibrio costicola [poly(U)-directed incorporation of phenylalanine] was studied. The extent of protein synthesis was limited by the number of ribosomes present. Density gradient centrifugation experiments suggested that, after runoff of ribosomes from the artificial messenger, the 50S subunit was unable to attach to the 30S-messenger complex. As shown previously (M. Kamekura and D. J. Kushner, J. Bacteriol. 160:385-390, 1984), Cl- ions inhibited protein synthesis; indeed, the highest rate of synthesis took place in the lowest attainable Cl- concentration (37 mM). The inhibitory effects were partly reversed by glutamate and betaine, both of which are concentrated within cells of V. costicola. The strongest reversal was seen when both glutamate and betaine were present. Cl- ions can prevent binding of ribosomes to poly(U) and displace ribosomes already bound to this artificial messenger. The effects of Cl- ions on binding were also reversed by glutamate and betaine. Cl- ions did not affect accuracy of translation; they were shown previously (Kamekura and Kushner, J. Bacteriol. 160:385-390, 1984) not to affect phenylalanyl-tRNA synthetase. It was also found that washing ribosomes with inhibitory NaCl concentrations did not interfere with their ability to carry out protein synthesis later in optimal (low) salt concentrations. On the contrary, these ribosomes were more active than before they were washed. We conclude that the main site of action of Cl- in the system studied is on the binding of ribosomes to the mRNA.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayley S. T., Griffiths E. Codon assignments and fidelity of translation in a cell-free protein-synthesizing system from an extremely halophilic bacterium. Can J Biochem. 1968 Aug;46(8):937–944. doi: 10.1139/o68-140. [DOI] [PubMed] [Google Scholar]
- Bilgin N., Kirsebom L. A., Ehrenberg M., Kurland C. G. Mutations in ribosomal proteins L7/L12 perturb EF-G and EF-Tu functions. Biochimie. 1988 May;70(5):611–618. doi: 10.1016/0300-9084(88)90244-1. [DOI] [PubMed] [Google Scholar]
- Imhoff J. F., Rodriguez-Valera F. Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol. 1984 Oct;160(1):478–479. doi: 10.1128/jb.160.1.478-479.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamekura M., Kushner D. J. Effect of chloride and glutamate ions on in vitro protein synthesis by the moderate halophile Vibrio costicola. J Bacteriol. 1984 Oct;160(1):385–390. doi: 10.1128/jb.160.1.385-390.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushner D. J., Hamaide F., MacLeod R. A. Development of salt-resistant active transport in a moderately halophilic bacterium. J Bacteriol. 1983 Mar;153(3):1163–1171. doi: 10.1128/jb.153.3.1163-1171.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas-Lenard J., Lipmann F. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1050–1057. doi: 10.1073/pnas.57.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makemson J. C., Hastings J. W. Glutamate functions in osmoregulation in a marine bacterium. Appl Environ Microbiol. 1979 Jul;38(1):178–180. doi: 10.1128/aem.38.1.178-180.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rafaeli-Eshkol D., Avi-Dor Y. Studies on halotolerance in a moderately halophilic bacterium. Effect of betaine on salt resistance of the respiratory system. Biochem J. 1968 Oct;109(4):687–691. doi: 10.1042/bj1090687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shindler D. B., Wydro R. M., Kushner D. J. Cell-bound cations of the moderately halophilic bacterium Vibrio costicola. J Bacteriol. 1977 May;130(2):698–703. doi: 10.1128/jb.130.2.698-703.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber L. A., Hickey E. D., Maroney P. A., Baglioni C. Inhibition of protein synthesis by Cl-. J Biol Chem. 1977 Jun 10;252(11):4007–4010. [PubMed] [Google Scholar]
- Wydro R. M., Madira W., Hiramatsu T., Kogut M., Kushner D. J. Salt-sensitive in vitro protein synthesis by a moderately halophilic bacterium. Nature. 1977 Oct 27;269(5631):824–825. doi: 10.1038/269824a0. [DOI] [PubMed] [Google Scholar]
- Wydro R., Kogut M., Kushner D. J. Salt response of ribosomes of a moderately halophilic bacterium. FEBS Lett. 1975 Dec 1;60(1):210–215. doi: 10.1016/0014-5793(75)80453-4. [DOI] [PubMed] [Google Scholar]
