Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Mar;171(3):1303–1308. doi: 10.1128/jb.171.3.1303-1308.1989

Comparison of glucose uptake kinetics in different yeasts.

A L Does 1, L F Bisson 1
PMCID: PMC209745  PMID: 2646277

Abstract

The kinetics of glucose uptake were investigated in laboratory wild-type strains of Saccharomyces cerevisiae of differing genetic backgrounds, in other species of Saccharomyces, and in other yeasts, both fermentative and respiratory. All yeasts examined displayed more than one uptake system for glucose. Variations in apparent Km values, velocity of uptake, and effects of glucose concentration on carrier activity were observed. The three type strains for the species S. cerevisiae, Saccharomyces bayanus, and Saccharomyces carlsbergensis gave distinctive patterns, and each of the laboratory strains was similar to one or another of the type strains. Other fermentative yeasts (Pichia guillermondi and Pichia strasburgensis) regulated glucose uptake in a manner similar to that of Saccharomyces spp. Such was not true for the respiratory yeasts investigated, Pichia heedi and Yarrowia lipolytica, which did not demonstrate glucose repression of carrier activity; this finding suggests that this mechanism of control of transporter activity may be associated with fermentative ability.

Full text

PDF
1303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcorn M. E., Griffin C. C. A kinetic analysis of D-xylose transport in Rhodotorula glutinis. Biochim Biophys Acta. 1978 Jul 4;510(2):361–371. doi: 10.1016/0005-2736(78)90036-6. [DOI] [PubMed] [Google Scholar]
  2. Barnett J. A., Sims A. P. Some physiological observations on the uptake of D-glucose and 2-deoxy-D-glucose by starving and exponentially-growing yeasts. Arch Microbiol. 1976 Dec 1;111(1-2):185–192. doi: 10.1007/BF00446567. [DOI] [PubMed] [Google Scholar]
  3. Bisson L. F. Derepression of high-affinity glucose uptake requires a functional secretory system in Saccharomyces cerevisiae. J Bacteriol. 1988 Jun;170(6):2654–2658. doi: 10.1128/jb.170.6.2654-2658.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bisson L. F., Fraenkel D. G. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J Bacteriol. 1984 Sep;159(3):1013–1017. doi: 10.1128/jb.159.3.1013-1017.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bisson L. F., Fraenkel D. G. Transport of 6-deoxyglucose in Saccharomyces cerevisiae. J Bacteriol. 1983 Sep;155(3):995–1000. doi: 10.1128/jb.155.3.995-1000.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bisson L. F. High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J Bacteriol. 1988 Oct;170(10):4838–4845. doi: 10.1128/jb.170.10.4838-4845.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bisson L. F., Neigeborn L., Carlson M., Fraenkel D. G. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol. 1987 Apr;169(4):1656–1662. doi: 10.1128/jb.169.4.1656-1662.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Celenza J. L., Marshall-Carlson L., Carlson M. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2130–2134. doi: 10.1073/pnas.85.7.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fiechter A., Fuhrmann G. F., Käppeli O. Regulation of glucose metabolism in growing yeast cells. Adv Microb Physiol. 1981;22:123–183. doi: 10.1016/s0065-2911(08)60327-6. [DOI] [PubMed] [Google Scholar]
  11. Gasnier B. Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim Biophys Acta. 1987 Oct 16;903(3):425–433. doi: 10.1016/0005-2736(87)90049-6. [DOI] [PubMed] [Google Scholar]
  12. Käppeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol. 1986;28:181–209. doi: 10.1016/s0065-2911(08)60239-8. [DOI] [PubMed] [Google Scholar]
  13. Lang J. M., Cirillo V. P. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol. 1987 Jul;169(7):2932–2937. doi: 10.1128/jb.169.7.2932-2937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schneider R. P., Wiley W. R. Regulation of sugar transport in Neurospora crassa. J Bacteriol. 1971 May;106(2):487–492. doi: 10.1128/jb.106.2.487-492.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schuddemat J., van den Broek P. J., van Steveninck J. The influence of ATP on sugar uptake mediated by the constitutive glucose carrier of Saccharomyces cerevisiae. Biochim Biophys Acta. 1988 Jan 13;937(1):81–87. doi: 10.1016/0005-2736(88)90229-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES