Abstract
From aerobically grown cells of the extremely thermophilic, facultatively anaerobic chemolithoautotrophic archaebacterium Desulfurolobus ambivalens (DSM 3772), a soluble oxygenase reductase (SOR) was purified which was not detectable in anaerobically grown cells. In the presence of oxygen but not under a hydrogen atmosphere, the enzyme simultaneously produced sulfite, thiosulfate, and hydrogen sulfide from sulfur. Nonenzymatic control experiments showed that thiosulfate was produced mainly in a chemical reaction between sulfite and sulfur. The maximum specific activity of the purified SOR in sulfite production was 10.6 mumol/mg of protein at pH 7.4 and 85 degrees C. The ratio of sulfite to hydrogen sulfide production was 5:4 in the presence of zinc ions. The temperature range of enzyme activity was 50 to 108 degrees C, with a maximum at 85 degrees C. The molecular mass of the native SOR was 550 kilodaltons, determined by gel filtration. It consisted of identical subunits with an apparent molecular mass of 40 kilodaltons in sodium dodecyl sulfate-gel electrophoresis. The particle diameter in electron micrographs was 15 /+- 1.5 nm. The enzyme activity was inhibited by the thiol-binding reagents p-chloromercuribenzoic acid, N-ethyl maleimide, and 2-iodoacetic acid and by flavin adenine dinucleotide, Fe3+, and Fe2+. It was not affected by CN-, N3-, or reduced glutathione.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adair F. W. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans. J Bacteriol. 1966 Oct;92(4):899–904. doi: 10.1128/jb.92.4.899-904.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Fischer F., Zillig W., Stetter K. O., Schreiber G. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature. 1983 Feb 10;301(5900):511–513. doi: 10.1038/301511a0. [DOI] [PubMed] [Google Scholar]
- Kelly D. P. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B Biol Sci. 1982 Sep 13;298(1093):499–528. doi: 10.1098/rstb.1982.0094. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Schedel M., Trüper H. G. Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim Biophys Acta. 1979 Jun 6;568(2):454–466. doi: 10.1016/0005-2744(79)90314-0. [DOI] [PubMed] [Google Scholar]
- Shivvers D. W., Brock T. D. Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol. 1973 May;114(2):706–710. doi: 10.1128/jb.114.2.706-710.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver M., Lundgren D. G. Sulfur-oxidizing enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem. 1968 May;46(5):457–461. doi: 10.1139/o68-069. [DOI] [PubMed] [Google Scholar]
- Sugio T., Mizunashi W., Inagaki K., Tano T. Purification and some properties of sulfur:ferric ion oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol. 1987 Nov;169(11):4916–4922. doi: 10.1128/jb.169.11.4916-4922.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki I. Incorporation of atmospheric oxygen-18 into thiosulfate by the sulfur-oxidizing enzyme of Thiobacillus thiooxidans. Biochim Biophys Acta. 1965 Oct 25;110(1):97–101. doi: 10.1016/s0926-6593(65)80098-4. [DOI] [PubMed] [Google Scholar]
- Suzuki I. Oxidation of elemental sulfur by an enzyme system of Thiobacillus thiooxidans. Biochim Biophys Acta. 1965 Jul 8;104(2):359–371. doi: 10.1016/0304-4165(65)90341-7. [DOI] [PubMed] [Google Scholar]
- Taylor B. F. Oxidation of elemental sulfur by an enzyme system from Thiobacillus neapolitanus. Biochim Biophys Acta. 1968 Nov 12;170(1):112–122. doi: 10.1016/0304-4165(68)90165-7. [DOI] [PubMed] [Google Scholar]
- Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zillig W., Yeats S., Holz I., Böck A., Gropp F., Rettenberger M., Lutz S. Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens. 1985 Feb 28-Mar 6Nature. 313(6005):789–791. doi: 10.1038/313789a0. [DOI] [PubMed] [Google Scholar]


