Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Apr;171(4):1893–1897. doi: 10.1128/jb.171.4.1893-1897.1989

Sexual reproduction as a response to H2O2 damage in Schizosaccharomyces pombe.

C Bernstein 1, V Johns 1
PMCID: PMC209837  PMID: 2703462

Abstract

Although sexual reproduction is widespread, its adaptive advantage over asexual reproduction is unclear. One major advantage of sex may be its promotion of recombinational repair of DNA damage during meiosis. This idea predicts that treatment of the asexual form of a facultatively sexual-asexual eucaryote with a DNA-damaging agent may cause it to enter the sexual cycle more frequently. Endogenous hydrogen peroxide is a major natural source of DNA damage. Thus, we treated vegetative cells of Schizosaccharomyces pombe with hydrogen peroxide to test if sexual reproduction increases. Among untreated stationary-phase S. pombe populations the sexual spores produced by meiosis represented about 1% of the total cells. However, treatment of late-exponential-phase vegetative cells with hydrogen peroxide increased the percentage of meiotic spores in the stationary phase by 4- to 18-fold. Oxidative damage therefore induces sexual reproduction in a facultatively sexual organism, a result expected by the hypothesis that sex promotes DNA repair.

Full text

PDF
1893

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein C. Damage in DNA of an infecting phage T4 shifts reproduction from asexual to sexual allowing rescue of its genes. Genet Res. 1987 Jun;49(3):183–189. doi: 10.1017/s0016672300027063. [DOI] [PubMed] [Google Scholar]
  2. Bernstein C. Why are babies young? Meiosis may prevent aging of the germ line. Perspect Biol Med. 1979 Summer;22(4):539–544. doi: 10.1353/pbm.1979.0041. [DOI] [PubMed] [Google Scholar]
  3. Bernstein H., Byerly H. C., Hopf F. A., Michod R. E. Sex and the emergence of species. J Theor Biol. 1985 Dec 21;117(4):665–690. doi: 10.1016/s0022-5193(85)80246-0. [DOI] [PubMed] [Google Scholar]
  4. Bernstein H., Hopf F. A., Michod R. E. The molecular basis of the evolution of sex. Adv Genet. 1987;24:323–370. doi: 10.1016/s0065-2660(08)60012-7. [DOI] [PubMed] [Google Scholar]
  5. Bryant P. E. Enzymatic restriction of mammalian cell DNA: evidence for double-strand breaks as potentially lethal lesions. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Jul;48(1):55–60. doi: 10.1080/09553008514551061. [DOI] [PubMed] [Google Scholar]
  6. Calleja G. B. On the nature of the forces involved in the sex-directed flocculation of a fission yeast. Can J Microbiol. 1974 Jun;20(6):797–803. doi: 10.1139/m74-123. [DOI] [PubMed] [Google Scholar]
  7. Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crandall M., Egel R., Mackay V. L. Physiology of mating in three yeasts. Adv Microb Physiol. 1977;15:307–398. doi: 10.1016/s0065-2911(08)60319-7. [DOI] [PubMed] [Google Scholar]
  9. Davies K. J., Goldberg A. L. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J Biol Chem. 1987 Jun 15;262(17):8227–8234. [PubMed] [Google Scholar]
  10. Demple B., Halbrook J., Linn S. Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J Bacteriol. 1983 Feb;153(2):1079–1082. doi: 10.1128/jb.153.2.1079-1082.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Demple B., Johnson A., Fung D. Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7731–7735. doi: 10.1073/pnas.83.20.7731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukui Y., Kozasa T., Kaziro Y., Takeda T., Yamamoto M. Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell. 1986 Jan 31;44(2):329–336. doi: 10.1016/0092-8674(86)90767-1. [DOI] [PubMed] [Google Scholar]
  13. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  14. Kaneko M., Leadon S. A., Ito T. Relationship between the induction of mitotic gene conversion and the formation of thymine glycols in yeast S. cerevisiae treated with hydrogen peroxide. Mutat Res. 1988 Jan;207(1):17–22. doi: 10.1016/0165-7992(88)90005-x. [DOI] [PubMed] [Google Scholar]
  15. Klar A. J. Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature. 1987 Apr 2;326(6112):466–470. doi: 10.1038/326466a0. [DOI] [PubMed] [Google Scholar]
  16. Lee P. C., Bochner B. R., Ames B. N. AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7496–7500. doi: 10.1073/pnas.80.24.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8059–8063. doi: 10.1073/pnas.83.21.8059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nadin-Davis S. A., Nasim A. A gene which encodes a predicted protein kinase can restore some functions of the ras gene in fission yeast. EMBO J. 1988 Apr;7(4):985–993. doi: 10.1002/j.1460-2075.1988.tb02905.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nurse P. Genetic control of cell size at cell division in yeast. Nature. 1975 Aug 14;256(5518):547–551. doi: 10.1038/256547a0. [DOI] [PubMed] [Google Scholar]
  20. Orr-Weaver T. L., Szostak J. W. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. doi: 10.1128/mr.49.1.33-58.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Treger J. M., Heichman K. A., McEntee K. Expression of the yeast UB14 gene increases in response to DNA-damaging agents and in meiosis. Mol Cell Biol. 1988 Mar;8(3):1132–1136. doi: 10.1128/mcb.8.3.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vaca C. E., Wilhelm J., Harms-Ringdahl M. Interaction of lipid peroxidation products with DNA. A review. Mutat Res. 1988 Mar;195(2):137–149. doi: 10.1016/0165-1110(88)90022-x. [DOI] [PubMed] [Google Scholar]
  23. Watanabe Y., Lino Y., Furuhata K., Shimoda C., Yamamoto M. The S.pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J. 1988 Mar;7(3):761–767. doi: 10.1002/j.1460-2075.1988.tb02873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yonei S., Yokota R., Sato Y. The distinct role of catalase and DNA repair systems in protection against hydrogen peroxide in Escherichia coli. Biochem Biophys Res Commun. 1987 Mar 13;143(2):638–644. doi: 10.1016/0006-291x(87)91401-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES