Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Jun;171(6):3162–3167. doi: 10.1128/jb.171.6.3162-3167.1989

Construction and characterization of an Azotobacter vinelandii strain with mutations in the genes encoding flavodoxin and ferredoxin I.

A E Martin 1, B K Burgess 1, S E Iismaa 1, C T Smartt 1, M R Jacobson 1, D R Dean 1
PMCID: PMC210031  PMID: 2722744

Abstract

Flavodoxin and ferredoxin I have both been implicated as components of the electron transport chain to nitrogenase in the aerobic bacterium Azotobacter vinelandii. Recently, the genes encoding flavodoxin (nifF) and ferredoxin I (fdxA) were cloned and sequenced and mutants were constructed which are unable to synthesize either flavodoxin (DJ130) or ferredoxin I (LM100). Both single mutants grow at wild-type rates under N2-fixing conditions. Here we report the construction of a double mutant (DJ138) which does not synthesize either flavodoxin or ferredoxin I. When plated on ammonium-containing medium, this mutant had a very small colony size when compared with the wild type, and in liquid culture with ammonium, this double mutant grew three times slower than the wild type or single mutant strains. This demonstrated that there is an important metabolic function unrelated to nitrogen fixation that is normally carried out by either flavodoxin or ferredoxin. If either one of these proteins is missing, the other can substitute for it. The double mutant phenotype can now be used to screen site-directed mutant versions of ferredoxin I for functionality in vivo even though the specific function of ferredoxin I is still unknown. The double mutant grew at the same slow rate under N2-fixing conditions. Thus, A. vinelandii continues to fix N2 even when both flavodoxin and ferredoxin I are missing, which suggests that a third as yet unidentified protein also serves as an electron donor to nitrogenase.

Full text

PDF
3162

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benemann J. R., Yoch D. C., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by Azotobacter. I. Azotoflavin as an electron carrier. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1079–1086. doi: 10.1073/pnas.64.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benemann J. R., Yoch D. C., Valentine R. C., Arnon D. I. The electron transport system in nitrogen fixation by azotobacter. 3. Requirements for NADPH-supported nitrogenase activity. Biochim Biophys Acta. 1971 Mar 2;226(2):205–212. doi: 10.1016/0005-2728(71)90087-9. [DOI] [PubMed] [Google Scholar]
  3. Bennett L. T., Jacobson M. R., Dean D. R. Isolation, sequencing, and mutagenesis of the nifF gene encoding flavodoxin from Azotobacter vinelandii. J Biol Chem. 1988 Jan 25;263(3):1364–1369. [PubMed] [Google Scholar]
  4. Emptage M. H., Kent T. A., Huynh B. H., Rawlings J., Orme-Johnson W. H., Münck E. On the nature of the iron-sulfur centers in a ferredoxin from Azotobacter vinelandii. Mössbauer studies and cluster displacement experiments. J Biol Chem. 1980 Mar 10;255(5):1793–1796. [PubMed] [Google Scholar]
  5. Ghosh D., Furey W., Jr, O'Donnell S., Stout C. D. Structure of a 7Fe ferredoxin from Azotobacter vinelandii. J Biol Chem. 1981 May 10;256(9):4185–4192. [PubMed] [Google Scholar]
  6. Ghosh D., O'Donnell S., Furey W., Jr, Robbins A. H., Stout C. D. Iron-sulfur clusters and protein structure of Azotobacter ferredoxin at 2.0 A resolution. J Mol Biol. 1982 Jun 15;158(1):73–109. doi: 10.1016/0022-2836(82)90451-x. [DOI] [PubMed] [Google Scholar]
  7. Hageman R. V., Burris R. H. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2699–2702. doi: 10.1073/pnas.75.6.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard J. B., Lorsbach T. W., Ghosh D., Melis K., Stout C. D. Structure of Azotobacter vinelandii 7Fe ferredoxin. Amino acid sequence and electron density maps of residues. J Biol Chem. 1983 Jan 10;258(1):508–522. [PubMed] [Google Scholar]
  9. Johnson M. K., Bennett D. E., Fee J. A., Sweeney W. V. Spectroscopic studies of the seven-iron-containing ferredoxins from Azotobacter vinelandii and Thermus thermophilus. Biochim Biophys Acta. 1987 Jan 5;911(1):81–94. doi: 10.1016/0167-4838(87)90273-1. [DOI] [PubMed] [Google Scholar]
  10. Morgan T. V., Lundell D. J., Burgess B. K. Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem. 1988 Jan 25;263(3):1370–1375. [PubMed] [Google Scholar]
  11. Morgan T. V., Stephens P. J., Devlin F., Stout C. D., Melis K. A., Burgess B. K. Spectroscopic studies of ferricyanide oxidation of Azotobacter vinelandii ferredoxin I. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1931–1935. doi: 10.1073/pnas.81.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Page W. J., von Tigerstrom M. Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol. 1979 Sep;139(3):1058–1061. doi: 10.1128/jb.139.3.1058-1061.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Robinson A. C., Dean D. R., Burgess B. K. Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J Biol Chem. 1987 Oct 15;262(29):14327–14332. [PubMed] [Google Scholar]
  14. Saeki K., Wakabayashi S., Zumft W. G., Matsubara H. Pseudomonas stutzeri ferredoxin: close similarity to Azotobacter vinelandii and Pseudomonas ovalis ferredoxins. J Biochem. 1988 Aug;104(2):242–246. doi: 10.1093/oxfordjournals.jbchem.a122450. [DOI] [PubMed] [Google Scholar]
  15. Shah V. K., Stacey G., Brill W. J. Electron transport to nitrogenase. Purification and characterization of pyruvate:flavodoxin oxidoreductase. The nifJ gene product. J Biol Chem. 1983 Oct 10;258(19):12064–12068. [PubMed] [Google Scholar]
  16. Shapira S. K., Chou J., Richaud F. V., Casadaban M. J. New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of beta-galactosidase. Gene. 1983 Nov;25(1):71–82. doi: 10.1016/0378-1119(83)90169-5. [DOI] [PubMed] [Google Scholar]
  17. Stout C. D. 7-Iron ferredoxin revisited. J Biol Chem. 1988 Jul 5;263(19):9256–9260. doi: 10.2210/pdb3fd1/pdb. [DOI] [PubMed] [Google Scholar]
  18. Stout G. H., Turley S., Sieker L. C., Jensen L. H. Structure of ferredoxin I from Azotobacter vinelandii. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1020–1022. doi: 10.1073/pnas.85.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  20. Sweeney W. V., Rabinowitz J. C., Yoch D. C. High and low reduction potential 4Fe-4S clusters in Azotobacter vinelandii (4Fe-4S) 2ferredoxin I. Influence of the polypeptide on the reduction potentials. J Biol Chem. 1975 Oct 10;250(19):7842–7847. [PubMed] [Google Scholar]
  21. Yates M. G. Electron transport to nitrogenase in Azotobacter chroococcum: Azotobacter flavodoxin hydroquinone as an electron donor. FEBS Lett. 1972 Oct 15;27(1):63–67. doi: 10.1016/0014-5793(72)80410-1. [DOI] [PubMed] [Google Scholar]
  22. Yoch D. C., Arnon D. I. Two biologically active ferredoxins from the aerobic nitrogen-fixing bacteriu, Azotobacter vinelandii. J Biol Chem. 1972 Jul 25;247(14):4514–4520. [PubMed] [Google Scholar]
  23. Yoch D. C. The electron transport system in nitrogen fixation by azotobacter. IV. Some oxidation-reduction properties of azotoflavin. Biochem Biophys Res Commun. 1972 Oct 17;49(2):335–342. doi: 10.1016/0006-291x(72)90415-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES