Abstract
Growth on galactose induces two transport processes, a high-affinity and a low-affinity process. The most important results of a comparison of the two processes were that (i) both depended on GAL2 expression, (ii) only the high-affinity process required galactokinase, (iii) both were down-regulated by catabolite inactivation, (iv) neither was significantly inhibited by carbonyl cyanide-p-trifluoromethoxy-phenyl-hydrazone, (v) neither was differentially inhibited by silver nitrate or mercuric chloride, and (vi) transport activity with a Km closer to that of the low-affinity process of whole cells was reconstituted in fused phospholipid membrane vesicles.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bisson L. F., Fraenkel D. G. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J Bacteriol. 1984 Sep;159(3):1013–1017. doi: 10.1128/jb.159.3.1013-1017.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L. F., Fraenkel D. G. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1730–1734. doi: 10.1073/pnas.80.6.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bisson L. F., Neigeborn L., Carlson M., Fraenkel D. G. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae. J Bacteriol. 1987 Apr;169(4):1656–1662. doi: 10.1128/jb.169.4.1656-1662.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celenza J. L., Marshall-Carlson L., Carlson M. The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2130–2134. doi: 10.1073/pnas.85.7.2130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUGLAS H. C., CONDIE F. The genetic control of galactose utilization in Saccharomyces. J Bacteriol. 1954 Dec;68(6):662–670. doi: 10.1128/jb.68.6.662-670.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bruijne A. W., Schuddemat J., Van den Broek P. J., Van Steveninck J. Regulation of sugar transport systems of Kluyveromyces marxianus: the role of carbohydrates and their catabolism. Biochim Biophys Acta. 1988 Apr 22;939(3):569–576. doi: 10.1016/0005-2736(88)90104-6. [DOI] [PubMed] [Google Scholar]
- Franzusoff A. J., Cirillo V. P. Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae. J Biol Chem. 1983 Mar 25;258(6):3608–3614. [PubMed] [Google Scholar]
- Franzusoff A., Cirillo V. P. Uptake and phosphorylation of 2-deoxy-D-glucose by wild-type and single-kinase strains of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Jun 14;688(2):295–304. doi: 10.1016/0005-2736(82)90340-6. [DOI] [PubMed] [Google Scholar]
- Gasnier B. Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. Biochim Biophys Acta. 1987 Oct 16;903(3):425–433. doi: 10.1016/0005-2736(87)90049-6. [DOI] [PubMed] [Google Scholar]
- Kou S. C., Christensen M. S., Cirillo V. P. Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol. 1970 Sep;103(3):671–678. doi: 10.1128/jb.103.3.671-678.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo S. C., Cirillo V. P. Galactose transport in Saccharomyces cerevisiae. 3. Characteristics of galactose uptake in transferaseless cells: evidence against transport-associated phosphorylation. J Bacteriol. 1970 Sep;103(3):679–685. doi: 10.1128/jb.103.3.679-685.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang J. M., Cirillo V. P. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol. 1987 Jul;169(7):2932–2937. doi: 10.1128/jb.169.7.2932-2937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matern H., Holzer H. Catabolite inactivation of the galactose uptake system in yeast. J Biol Chem. 1977 Sep 25;252(18):6399–6402. [PubMed] [Google Scholar]
- Ongjoco R., Szkutnicka K., Cirillo V. P. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes. J Bacteriol. 1987 Jul;169(7):2926–2931. doi: 10.1128/jb.169.7.2926-2931.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos J., Szkutnicka K., Cirillo V. P. Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae. J Bacteriol. 1988 Nov;170(11):5375–5377. doi: 10.1128/jb.170.11.5375-5377.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano R., Delafuente G. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol Cell Biochem. 1974 Dec 20;5(3):161–171. doi: 10.1007/BF01731379. [DOI] [PubMed] [Google Scholar]
- Tschopp J. F., Emr S. D., Field C., Schekman R. GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol. 1986 Apr;166(1):313–318. doi: 10.1128/jb.166.1.313-318.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma R. S., Spencer-Martins I., Van Uden N. Role of de novo protein synthesis in the interconversion of glucose transport systems in the yeast Pichia ohmeri. Biochim Biophys Acta. 1987 Jun 12;900(1):139–144. doi: 10.1016/0005-2736(87)90285-9. [DOI] [PubMed] [Google Scholar]
- van Steveninck J., Dawson E. C. Active and passive galactose transport in yeast. Biochim Biophys Acta. 1968 Jan 3;150(1):47–55. doi: 10.1016/0005-2736(68)90007-2. [DOI] [PubMed] [Google Scholar]
- van Steveninck J. Transport and transport-associated phosphorylation of galactose in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Aug 9;274(2):575–583. doi: 10.1016/0005-2736(72)90204-0. [DOI] [PubMed] [Google Scholar]