Abstract
Cytochrome b5 is inserted posttranslationally into membranes in vivo and spontaneously into liposomes in vitro by a short carboxyl-terminal hydrophobic membrane-anchoring sequence. DNA corresponding to this hydrophobic sequence has been synthesized, and two gene fusions with the Escherichia coli enzyme beta-galactosidase have been constructed by locating the hydrophobic domain in one case at the EcoRI site near the C terminus and in the other at the normal C terminus of the enzyme. The latter fusion protein was enzymatically active, having approximately 50% of the specific activity of beta-galactosidase, and cells expressing this protein grew normally with lactose as the sole carbon source. Both fusion proteins were localized to the E. coli inner membrane, converting beta-galactosidase from a cytoplasmic enzyme to a membrane-associated enzyme. The hydrophobic domain of cytochrome b5 therefore contains the information required to target polypeptides containing this domain to the membrane. Use of the cytochrome b5 hydrophobic peptide, either alone or in conjunction with other localizing sequences such as signal sequences, provides a general procedure for associating proteins with membranes. Polypeptides bearing this hydrophobic peptide may have considerable use as pharmaceuticals when associated with liposomes or cellular membranes.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson D. J., Mostov K. E., Blobel G. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7249–7253. doi: 10.1073/pnas.80.23.7249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayala J. A., Plá J., Desviat L. R., de Pedro M. A. A lacZ-pbpB gene fusion coding for an inducible hybrid protein that recognizes localized sites in the inner membrane of Escherichia coli. J Bacteriol. 1988 Aug;170(8):3333–3341. doi: 10.1128/jb.170.8.3333-3341.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck von Bodman S., Schuler M. A., Jollie D. R., Sligar S. G. Synthesis, bacterial expression, and mutagenesis of the gene coding for mammalian cytochrome b5. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9443–9447. doi: 10.1073/pnas.83.24.9443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caras I. W., Weddell G. N., Davitz M. A., Nussenzweig V., Martin D. W., Jr Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science. 1987 Nov 27;238(4831):1280–1283. doi: 10.1126/science.2446389. [DOI] [PubMed] [Google Scholar]
- Casadaban M. J., Chou J., Cohen S. N. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. doi: 10.1128/jb.143.2.971-980.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dailey H. A., Strittmatter P. The role of COOH-terminal anionic residues in binding cytochrome b5 to phospholipid vesicles and biological membranes. J Biol Chem. 1981 Feb 25;256(4):1677–1680. [PubMed] [Google Scholar]
- Grantham R., Gautier C., Gouy M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res. 1980 May 10;8(9):1893–1912. doi: 10.1093/nar/8.9.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itakura K., Hirose T., Crea R., Riggs A. D., Heyneker H. L., Bolivar F., Boyer H. W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science. 1977 Dec 9;198(4321):1056–1063. doi: 10.1126/science.412251. [DOI] [PubMed] [Google Scholar]
- Kondo K., Tajima S., Sato R., Narita K. Primary structure of the membrane-binding segment of rabbit cytochrome b5. J Biochem. 1979 Oct;86(4):1119–1128. doi: 10.1093/oxfordjournals.jbchem.a132606. [DOI] [PubMed] [Google Scholar]
- Mathews F. S. The structure, function and evolution of cytochromes. Prog Biophys Mol Biol. 1985;45(1):1–56. doi: 10.1016/0079-6107(85)90004-5. [DOI] [PubMed] [Google Scholar]
- Moreno F., Fowler A. V., Hall M., Silhavy T. J., Zabin I., Schwartz M. A signal sequence is not sufficient to lead beta-galactosidase out of the cytoplasm. Nature. 1980 Jul 24;286(5771):356–359. doi: 10.1038/286356a0. [DOI] [PubMed] [Google Scholar]
- Rogers M. J., Strittmatter P. The interaction of NADH-cytochrome b5 reductase and cytochrome b5 bound to egg lecithin liposomes. J Biol Chem. 1975 Jul 25;250(14):5713–5718. [PubMed] [Google Scholar]
- Rüther U., Müller-Hill B. Easy identification of cDNA clones. EMBO J. 1983;2(10):1791–1794. doi: 10.1002/j.1460-2075.1983.tb01659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter P., Rogers M. J., Spatz L. The binding of cytochrome b 5 to liver microsomes. J Biol Chem. 1972 Nov 25;247(22):7188–7194. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verner K., Schatz G. Protein translocation across membranes. Science. 1988 Sep 9;241(4871):1307–1313. doi: 10.1126/science.2842866. [DOI] [PubMed] [Google Scholar]
- Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]



