Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1989 Sep;171(9):4589–4594. doi: 10.1128/jb.171.9.4589-4594.1989

Interference reflection microscopic study of sites of association between gliding bacteria and glass substrata.

S L Godwin 1, M Fletcher 1, R P Burchard 1
PMCID: PMC210255  PMID: 2768185

Abstract

Sites of close contact between gliding Cytophaga sp. strain U67 cells and glass were examined by interference reflection microscopy. Site patterns changed during translocation and moved relative to the substratum, in contrast to previous interference reflection microscopy observations of fibroblast and amoeboid motility. Sinistral rotation around the long axis of the cell was coupled with gliding, except when curved cells traversed curvilinear pathways. Close contact was temporary, since cells flipped up off the substratum on one pole, pivoted, or were displaced laterally in collisions. Other members of the order Cytophagales and Myxococcus sp. demonstrated similar patterns of close association with substrata.

Full text

PDF
4589

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Dunn G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res. 1975 Apr;92(1):57–62. doi: 10.1016/0014-4827(75)90636-9. [DOI] [PubMed] [Google Scholar]
  2. Bailey J., Gingell D. Contacts of chick fibroblasts on glass: results and limitations of quantitative interferometry. J Cell Sci. 1988 Jun;90(Pt 2):215–224. doi: 10.1242/jcs.90.2.215. [DOI] [PubMed] [Google Scholar]
  3. Burchard R. P. Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu Rev Microbiol. 1981;35:497–529. doi: 10.1146/annurev.mi.35.100181.002433. [DOI] [PubMed] [Google Scholar]
  4. CURTIS A. S. THE MECHANISM OF ADHESION OF CELLS TO GLASS. A STUDY BY INTERFERENCE REFLECTION MICROSCOPY. J Cell Biol. 1964 Feb;20:199–215. doi: 10.1083/jcb.20.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fletcher M. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J Bacteriol. 1988 May;170(5):2027–2030. doi: 10.1128/jb.170.5.2027-2030.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gingell D., Todd I. Interference reflection microscopy. A quantitative theory for image interpretation and its application to cell-substratum separation measurement. Biophys J. 1979 Jun;26(3):507–526. doi: 10.1016/S0006-3495(79)85268-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972 Dec;36(4):478–503. doi: 10.1128/br.36.4.478-503.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  9. Johnson J. L., Chilton W. S. Galactosamine glycan of Chondrococcus columnaris. Science. 1966 May 27;152(3726):1247–1248. doi: 10.1126/science.152.3726.1247. [DOI] [PubMed] [Google Scholar]
  10. Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5952–5956. doi: 10.1073/pnas.76.11.5952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lapidus I. R., Berg H. C. Gliding motility of Cytophaga sp. strain U67. J Bacteriol. 1982 Jul;151(1):384–398. doi: 10.1128/jb.151.1.384-398.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MacRae T. H., McCurdy D. Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus. Can J Microbiol. 1976 Oct;22(10):1589–1593. doi: 10.1139/m76-234. [DOI] [PubMed] [Google Scholar]
  13. Marshall K. C., Cruickshank R. H. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch Mikrobiol. 1973 Apr 8;91(1):29–40. doi: 10.1007/BF00409536. [DOI] [PubMed] [Google Scholar]
  14. McGrath C. F., Burchard R. P. Guidance of Cytophaga sp. strain U67 gliding on the sheaths of Oscillatoria princeps. J Bacteriol. 1985 May;162(2):817–821. doi: 10.1128/jb.162.2.817-821.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Preston T. M., King C. A. An experimental study of the interaction between the soil amoeba Naegleria gruberi and a glass substrate during amoeboid locomotion. J Cell Sci. 1978 Dec;34:145–158. doi: 10.1242/jcs.34.1.145. [DOI] [PubMed] [Google Scholar]
  16. Reichenbach H. Taxonomy of the gliding bacteria. Annu Rev Microbiol. 1981;35:339–364. doi: 10.1146/annurev.mi.35.100181.002011. [DOI] [PubMed] [Google Scholar]
  17. Ridgway H. F., Lewin R. A. Characterization of gliding motility in Flexibacter polymorphus. Cell Motil Cytoskeleton. 1988;11(1):46–63. doi: 10.1002/cm.970110106. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES